Provers & Solvers

Lecture 3: \alpha-Superposition

Jasmin Blanchette LMU Munich

Partly based on slides by Alexander Bentkamp

Outline of These Lectures

- 1. Resolution
- 2. Superposition
- 3. \alpha-Superposition
- 4. CDCL and CDCL(T)
- 5. AVATAR

Disclaimer

A Higher-Order Proof Goal

show
$$\left(\sum_{i=1}^{n} i^2 + 2i + 1\right) = \left(\sum_{i=1}^{n} i^2\right) + \left(\sum_{i=1}^{n} 2i\right) + \left(\sum_{i=1}^{n} 1\right)$$

Find Proof

A Higher-Order Proof Goal

show
$$\left(\sum_{i=1}^{n} i^2 + 2i + 1\right) = \left(\sum_{i=1}^{n} i^2\right) + \left(\sum_{i=1}^{n} 2i\right) + \left(\sum_{i=1}^{n} 1\right)$$

Find Proof

Proof assistant

Lost in Translation

$$\left(\sum_{i=1}^{n} i^2 + 2i + 1\right) = \left(\sum_{i=1}^{n} i^2\right) + \left(\sum_{i=1}^{n} 2i\right) + \left(\sum_{i=1}^{n} 1\right)$$

Lost in Translation

$$\left(\sum_{i=1}^{n} i^2 + 2i + 1\right) = \left(\sum_{i=1}^{n} i^2\right) + \left(\sum_{i=1}^{n} 2i\right) + \left(\sum_{i=1}^{n} 1\right)$$

sum(1, n, C(B(plus, S(B(plus, C(power, 2)), app(times, 2))), 1))= app(app(plus, app(app(plus, sum(1, n, C(power, 2))), sum(1, n, app(times, 2)))), sum(1, n, K(1)))

Design Goal for \lambda-Superposition

A sound, complete, **graceful generalization** of first-order superposition

Syntax of Higher-Order Logic

Given a signature, consisting of

- atomic types (e.g., bool, nat)
- symbols (e.g., 1, ·, gcd) declared with their types

Syntax of Higher-Order Logic

Given a signature, consisting of

- atomic types (e.g., bool, nat)
- symbols (e.g., 1, ·, gcd) declared with their types

The **terms** are defined by these rules:

- A variable x declared with type T is a term of type T
- A symbol f declared with type T is a term of type T
- If t has type T, an abstraction $\lambda x : \sigma$. t is a term of type $\sigma \to T$
- If t has type $\sigma \to \tau$ and t' has type σ , an application t t' is a term of type τ

Syntax of Higher-Order Logic

Given a signature, consisting of

- atomic types (e.g., bool, nat)
- symbols (e.g., 1, ·, gcd) declared with their types

Formulas are terms of type bool

The **terms** are defined by these rules:

- A variable x declared with type T is a term of type T
- A symbol f declared with type T is a term of type T
- If t has type T, an abstraction $\lambda x : \sigma$. t is a term of type $\sigma \to T$
- If t has type $\sigma \to \tau$ and t' has type σ , an application t t' is a term of type τ

Examples: Higher-Order Terms

$$\lambda x$$
. λy . $g y x$

$$1 + 2$$

aβη-Equivalence

Terms are considered equal up to the following three rules:

- (a) $(\lambda x. t(x)) = (\lambda y. t(y))$
- (β) (λx . t(x)) u = t(u) if x does not occur free in u
- (η) $(\lambda x.t x) = t$ if x does not occur free in t

Examples: aßn-Equivalence

$$g(\lambda x. f x x) = g(\lambda z. f z z)$$

$$(\lambda x. f x x) a = f a a$$

$$g(faa) = g(\lambda y. faa y)$$

Syntax of Clausal Higher-Order Logic

The **atoms** are defined by this rule:

• If t_1 and t_2 are terms, then $t_1 = t_2$ (viewed as an unordered pair) is an atom

The **literals** are defined by this rule:

• If A is an atom, then A and $\neg A$ are literals

The **clauses** are defined by this rule:

• If $L_1, ..., L_n$ are literals, then $L_1 \vee \cdots \vee L_n$ (viewed as a multiset) is a clause

We write \perp if n = 0

Syntax of Clausal Higher-Order Logic

The **atoms** are defined by this rule:

• If t_1 and t_2 are terms, then $t_1 = t_2$ (viewed as an unordered pair) is an atom

The **literals** are defined by this rule:

• If A is an atom, then A and $\neg A$ are literals

The **clauses** are defined by this rule:

• If $L_1, ..., L_n$ are literals, then $L_1 \vee \cdots \vee L_n$ (viewed as a multiset) is a clause

We write \perp if n = 0

- \top , \wedge , \Rightarrow , \forall , \exists can appear in terms
- Variables are understood as "for all"

Goal:

$$\left(\sum_{i=1}^{n} i^2 + 2i + 1\right) = \left(\sum_{i=1}^{n} i^2\right) + \left(\sum_{i=1}^{n} 2i\right) + \left(\sum_{i=1}^{n} 1\right)$$

Distributivity lemma:

$$\forall f, g . \sum_{i=1}^{n} (f i + g i) = \sum_{i=1}^{n} f i + \sum_{i=1}^{n} g i$$

Proof idea:

$$\left(\sum_{i=1}^{n} i^2 + 2i + 1\right) = \sum_{i=1}^{n} \left(i^2 + 2i\right) + \sum_{i=1}^{n} 1 = \left(\sum_{i=1}^{n} i^2\right) + \left(\sum_{i=1}^{n} 2i\right) + \left(\sum_{i=1}^{n} 1\right)$$

Goal:

$$\left(\sum_{i=1}^{n} i^2 + 2i + 1\right) = \left(\sum_{i=1}^{n} i^2\right) + \left(\sum_{i=1}^{n} 2i\right) + \left(\sum_{i=1}^{n} 1\right)$$

sum 1 n (λi . $i^2 + 2i + 1$) = sum 1 n (λi . i^2) + sum 1 n (λi . 2i) + sum 1 n (λi . 1)

Distributivity lemma:

$$\forall f, g \, . \, \sum_{i=1}^{n} (f \, i + g \, i) = \sum_{i=1}^{n} f \, i + \sum_{i=1}^{n} g \, i$$

sum 1 n $(\lambda i. fi + gi)$ = sum 1 n $(\lambda i. fi)$ + sum 1 n $(\lambda i. gi)$

Proof idea:

$$\left(\sum_{i=1}^{n} i^2 + 2i + 1\right) = \sum_{i=1}^{n} \left(i^2 + 2i\right) + \sum_{i=1}^{n} 1 = \left(\sum_{i=1}^{n} i^2\right) + \left(\sum_{i=1}^{n} 2i\right) + \left(\sum_{i=1}^{n} 1\right)$$

```
sum 1 n (\lambda i. fi + gi)

sum 1 n (\lambda i. i^2 + 2i + 1)

sum 1 n (\lambda i. i^2) + sum 1 n (\lambda i. 2i) + sum 1 n (\lambda i. 1)
```

```
\operatorname{sum} 1 \operatorname{n} (\lambda i. fi + gi)
= \operatorname{sum} 1 \operatorname{n} (\lambda i. fi) + \operatorname{sum} 1 \operatorname{n} (\lambda i. gi)
\operatorname{sum} 1 \operatorname{n} (\lambda i. i^2 + 2i + 1)
\operatorname{sum} 1 \operatorname{n} (\lambda i. i^2 + 2i + 1)
\operatorname{sum} 1 \operatorname{n} (\lambda i. i^2 + 2i + 1)
\operatorname{sum} 1 \operatorname{n} (\lambda i. i^2 + 2i + 1)
\operatorname{sum} 1 \operatorname{n} (\lambda i. i^2 + 2i) + \operatorname{sum} 1 \operatorname{n} (\lambda i. 1)
```

```
sum 1 n (\lambda i. fi + g i)
= sum 1 n (\lambda i. fi) + sum 1 n (\lambda i. g i)
sum 1 n (\lambda i. i^2 + 2i + 1)
sum 1 n (\lambda i. i^2 + 2i + 1)
sum 1 n (\lambda i. i^2 + 2i + 1)
\neq sum 1 n (\lambda i. i^2 + 2i) + sum 1 n (\lambda i. 1)
```

```
sum 1 n (\lambda i. fi + gi)
= sum 1 n (\lambda i. fi) + sum 1 n (\lambda i. gi)
sum 1 n (\lambda i. i^2 + 2i + 1)
sum 1 n (\lambda i. i^2 + 2i + 1)
sum 1 n (\lambda i. i^2 + 2i + 1)
\neq sum 1 n (\lambda i. i^2 + 2i) + sum 1 n (\lambda i. 1)
```

```
\operatorname{sum} 1 \operatorname{n} (\lambda i. fi + gi) \\ = \operatorname{sum} 1 \operatorname{n} (\lambda i. fi) + \operatorname{sum} 1 \operatorname{n} (\lambda i. gi) 
\operatorname{sum} 1 \operatorname{n} (\lambda i. i^2 + 2i + 1) \\ = \operatorname{sum} 1 \operatorname{n} (\lambda i. i^2) + \operatorname{sum} 1 \operatorname{n} (\lambda i. 2i) + \operatorname{sum} 1 \operatorname{n} (\lambda i. 1)
\operatorname{sum} 1 \operatorname{n} (\lambda i. i^2 + 2i + 1) \\ = \operatorname{sum} 1 \operatorname{n} (\lambda i. i^2 + 2i + 1)
\operatorname{sum} 1 \operatorname{n} (\lambda i. i^2 + 2i + 1)
\operatorname{sum} 1 \operatorname{n} (\lambda i. i^2 + 2i + 1)
```



```
sum 1 n (\lambda i. fi + gi)
                                                                                                   sum 1 n (\lambda i. i^2 + 2i + 1)
= sum 1 n (\lambda i. fi) + sum 1 n (\lambda i. gi)
                                                                              \neq sum 1 n (λi. i<sup>2</sup>) + sum 1 n (λi. 2i) + sum 1 n (λi. 1)
                                                                      sum 1 n (\lambda i. i^2 + 2i + 1)
                                                           \neq sum 1 n (\lambda i. i^2 + 2i) + sum 1 n (\lambda i. 1)
                                                     sum 1 n (\lambda i. i^2 + 2i + 1)
                                                  \neq sum 1 n (\lambda i. i^2 + 2i + 1)
```

```
sum 1 n (\lambda i. fi + gi)
                                                                                                   sum 1 n (\lambda i. i^2 + 2i + 1)
= sum 1 n (\lambda i. fi) + sum 1 n (\lambda i. gi)
                                                                              \neq sum 1 n (λi. i<sup>2</sup>) + sum 1 n (λi. 2i) + sum 1 n (λi. 1)
                                                                      sum 1 n (\lambda i. i^2 + 2i + 1)
                                                           \neq sum 1 n (\lambda i. i^2 + 2i) + sum 1 n (\lambda i. 1)
                                                     sum 1 n (\lambda i. i^2 + 2i + 1)
                                                  \neq sum 1 n (\lambda i. i^2 + 2i + 1)
```

```
sum 1 n (\lambda i. fi + gi)
                                                                                                   sum 1 n (\lambda i. i^2 + 2i + 1)
= sum 1 n (\lambda i. fi) + sum 1 n (\lambda i. gi)
                                                                              \neq sum 1 n (λi. i<sup>2</sup>) + sum 1 n (λi. 2i) + sum 1 n (λi. 1)
                                                                      sum 1 n (\lambda i. i^2 + 2i + 1)
                                                           \neq sum 1 n (\lambda i. i^2 + 2i) + sum 1 n (\lambda i. 1)
                                                     sum 1 n (\lambda i. i^2 + 2i + 1)
                                                  \neq sum 1 n (\lambda i. i^2 + 2i + 1)
```

Design Challenges for \lambda-Superposition

- 1. The term order
- 2. Unification
- 3. Booleans

Challenge 1: The Term Order

In first-order superposition:

- A subterm must be smaller than the whole term:
 - e.g. c < g(c) < f(g(c))
- Putting two terms in the same context should preserve the orientation:
 - e.g. if b > a then f(b, c) > f(a, c)

In first-order superposition:

A subterm must be smaller than the whole term:

e.g.
$$c < g(c) < f(g(c))$$

Putting two terms in the same context should preserve the orientation:

e.g. if
$$b > a$$
 then $f(b, c) > f(a, c)$

$$(\lambda y. f(\lambda z. z)) > (\lambda z. z)$$

In first-order superposition:

• A subterm must be smaller than the whole term:

e.g.
$$c < g(c) < f(g(c))$$

• Putting two terms in the same context should preserve the orientation: e.g. if b > a then f(b, c) > f(a, c)

In first-order superposition:

• A subterm must be smaller than the whole term:

e.g.
$$c < g(c) < f(g(c))$$

• Putting two terms in the same context should preserve the orientation: e.g. if b > a then f(b, c) > f(a, c)

In first-order superposition:

A subterm must be smaller than the whole term:

e.g.
$$c < g(c) < f(g(c))$$

• Putting two terms in the same context should preserve the orientation: e.g. if b > a then f(b, c) > f(a, c)

In first-order superposition:

• A subterm must be smaller than the whole term:

e.g.
$$c < g(c) < f(g(c))$$

• Putting two terms in the same context should preserve the orientation: e.g. if b > a then f(b, c) > f(a, c)

$$(\lambda y. f(\lambda z. z)) > (\lambda z. z)$$

$$[] (g (f (\lambda z. z))) \qquad [] (g (f (\lambda z. z)))$$

$$f (\lambda z. z) < g (f (\lambda z. z))$$

In first-order superposition:

A subterm must be smaller than the whole term:

e.g.
$$c < g(c) < f(g(c))$$

• Putting two terms in the same context should preserve the orientation: e.g. if b > a then f(b, c) > f(a, c)

$$(\lambda y. f(\lambda z. z)) > (\lambda z. z)$$

$$[] (g (f (\lambda z. z))) \qquad [] (g (f (\lambda z. z)))$$

$$f (\lambda z. z) > g (f (\lambda z. z))$$

In first-order superposition:

A subterm must be smaller than the whole term:

e.g.
$$c < g(c) < f(g(c))$$

• Putting two terms in the same context should preserve the orientation: e.g. if b > a then f(b, c) > f(a, c)

Solution:

- Weaken the second requirement: only
 good contexts must preserve the orientation
- The main superposition rule acts only on good contexts
- Compensate with an extra calculus rule

Solution:

- Weaken the second requirement: only
 good contexts must preserve the orientation
- The main superposition rule acts only on good contexts
- Compensate with an extra calculus rule

Extra rule:

If the clause

$$C \lor t = t'$$

is contained in **F** and *t*, *t'* are functions, then add the clause

$$C \lor t x = t' x$$

to F

F g = f $ga \neq fa$ g x = f x $fa \neq fa$

In first-order logic:

• A ground clause C is redundant w.r.t. ground F if $C_1, ..., C_n \in F$ are all smaller than C and they together entail C

In first-order logic:

• A ground clause C is redundant w.r.t. ground F if $C_1, ..., C_n \in F$ are all smaller than C and they together entail C

Higher-order issue:

• The conclusion of the extra inference rule would be redundant w.r.t. the premise

In first-order logic:

• A ground clause C is redundant if $C_1, ..., C_n \in \mathbb{F}$ are all smaller they together entail C

Higher-order issue:

• The conclusion of the extra inference rule would be redundant w.r.t. the premise

Solution:

Use weaker notion of entailment

Examples:

- b = a makes f b = f a redundant
- g = f does not make g a = f a redundant

Solution:

Use weaker notion of entailment

Examples:

- b = a makes f b = f a redundant
- g_0 = f_0 does not make g_1a_0 = f_1a_0 redundant

Nonground Redundancy Criterion

A nonground clause C is redundant w.r.t. nonground F if each clause in ground(C) is redundant w.r.t. ground(F)

Nonground Redundancy Criterion

A nonground clause C is redundant w.r.t. nonground F if each clause in ground(C) is redundant w.r.t. ground(F)

Examples:

- b x = a makes f (b x) = f a redundant
- g = f **does not** make g x = f x redundant

Argument pruning:

If a clause of the form

C(y)

Argument pruning:

If a clause of the form

C(y)

is contained in **F**, where one of *y*'s arguments is computable from the others, then **remove** the argument

y b b $\neq y$ a a

Argument pruning:

If a clause of the form

C(y)

$$ybb \neq yaa$$
 $yb \neq ya$

Argument pruning:

If a clause of the form

C(y)

$$ybb \neq yaa$$
 $yb \neq ya$
 $yac \neq yab$

Argument pruning:

If a clause of the form

$$ybb \neq yaa$$
 $yb \neq ya$

$$yac \neq yab$$
 $yc \neq yb$

Argument pruning:

If a clause of the form

$$ybb \neq yaa$$
 $yb \neq ya$
 $yac \neq yab$ $yc \neq yb$
 $yac \neq zbd$

Argument pruning:

If a clause of the form

$$ybb \neq yaa \quad yb \neq ya$$

$$yac \neq yab \quad yc \neq yb$$

$$yac \neq zbd \quad y \neq z$$

Challenge 2: Unification

In first-order logic:

• Most general unifiers always exist and can be computed e.g. unifying f(a, y) with f(x, b) yields the mgu $\{x \mapsto a, y \mapsto b\}$

Challenge 2: Unification

In first-order logic:

• Most general unifiers always exist and can be computed e.g. unifying f(a, y) with f(x, b) yields the mgu $\{x \mapsto a, y \mapsto b\}$

In higher-order logic:

- A. Most general unifiers **do not** always exist e.g. unifying f(y a) and y(f a) yields infinitely many unifiers $\{y \mapsto \lambda x. x\}$ $\{y \mapsto \lambda x. f(x)\}$ $\{y \mapsto \lambda x. f(f(x))\}$...
- B. Unification is undecidable
- C. Applied variables can hide positions where inferences should be made

Challenge 2: Unification

Solutions:

- A. Use a (possibly infinite) sequence of unifiers instead of mgu
- B. Interweave unification and inferences
- C. Introduce a special "fluid" version of the main inference

f a = c
$$h(yb)(ya) \neq h(g(fb))(gc)$$

$$f a = c$$

$$h (y b) (y a) \neq h (g (f b)) (g c)$$

$$y \mapsto \lambda x. g (f x)$$

$$h (g (f b)) (g (f a)) \neq h (g (f b)) (g c)$$

z (f a) = z c $h (y b) (y a) \neq h (g (f b)) (g c)$

```
F
z(fa) = zc 	 h(yb)(ya) \neq h(g(fb))(gc)
z(fa) \text{ is unified }
with ya
```


Challenge 3: Boolean Expressions

In first-order logic:

- Terms and formulas are distinct syntactic entities
- Clausification is simple and focuses on the outer skeleton

Challenge 3: Boolean Expressions

In first-order logic:

- Terms and formulas are distinct syntactic entities
- Clausification is simple and focuses on the outer skeleton

Higher-order issues:

- A. Formulas can appear nested in terms, including under λ 's e.g. (λx . if $\exists y$. p x y then a else b)
- B. We cannot perform clausification entirely in preprocessing

Challenge 3: Boolean Expressions

Solution:

We introduce dedicated inference rules to clausify dynamically

Soundness of \lambda-Superposition

The inference rules are easy to show sound

In particular, the extra rule is justified by **argument congruence**: if $[g]^J = [f]^J$, then $[g a]^J = [f a]^J$ for any a

Completeness of \(\lambda\)-Superposition

If the clause set F is initially unsatisfiable* and inferences are performed fairly, then F will eventually contain \bot

Completeness of \lambda-Superposition

If the clause set F is initially unsatisfiable* and inferences are performed fairly, then F will eventually contain \bot

* with respect to the so-called Henkin semantics

Standard Saturation Loop

Standard Saturation Loop

Standard Saturation Loop

Generalized Saturation Loop

Generalized Saturation Loop

Generalized Saturation Loop

Competition Results (CASC 2023)

Higher-order	Vampire	Zipperpin	<u>Zipperpin</u>	$\mathbf{\underline{E}}$	Leo-III	Satallax	cvc5	Lash	LEO-II	Duper
Theorems	4.8	2.1.9999	2.1.999	3.1	1.7.8	3.4	1.0.5	1.13	1.7.0	1.0
Solved/500	452/500	440/500	438/500	407/500	302/500	268/500	258/500	208/500	58/500	36/500
Solutions	452 90%	440 88%	438 87%	407 81%	302 60%	268 53%	258 51%	196 39%	58 11%	36 7%
SLedgeHammer	<u>E</u>	Tr	7innovniv	Vomniro	ov.o5	Cotollow	Lash	Leo-III	Dunon	
	<u> 12</u>	<u> </u>	Vibber bit	<u>Vampire</u>	CVCS	Satallax	Lasii	Teo-III	Duper	
Theorems	3.0	3.1	Zipperpin 2.1.9999	4.8	<u>cvc5</u> 1.0.5	3.4	1.13	1.7.8	Duper	
Theorems Solved/1000			2.1.9999	4.8		3.4				

Competition Results (CASC 2023)

Higher-order	Vampire	Zipperpin	<u>Zipperpin</u>	<u>E</u>	Leo-III	Satallax	cvc5	Lash	LEO-II	Duper
Theorems	4.8	2.1.9999	2.1.999	3.1	1.7.8	3.4	1.0.5	1.13	1.7.0	1.0
Solved/500	452/50	440/500	438/500	407/500	302/500	268/500	258/500	208/500	58/50	36/500
Solutions	452 00	440 000	438 070%	407 81%	302 60%	268 53%	258 51%	196 39 gr	58 110	36 7%
SLedgeHammer	<u>E</u>	D	Zipperpin	Vampire	cvc5	Satallax	Lash	Leo-III	<u>Duper</u>	
Theorems	3.0	3.1	2.1.9999	4.8	1.0.5	3.4	1.13	1.7.8	1.0	
Solved/1000	467/1000	467/1000	462/1000	454/1000	362/1000	278/1000	219/1000	125/100	51/1000	
Solutions	467 46%	467 46%	462 46%	454 45%	362 36%	278 27%	219 21%	125 12 6	51 5%	
	-		_				•			

References

Superposition with Lambdas

A. Bentkamp, J. Blanchette, S. Tourret, P. Vukmirović, and U. Waldmann *Journal of Automated Reasoning* 65(7), 2021

Superposition for Higher-Order Logic

A. Bentkamp, J. Blanchette, S. Tourret, and P. Vukmirović Journal of Automated Reasoning 67, article number 10, 2023

Mechanical Mathematicians

A. Bentkamp, J. Blanchette, V. Nummelin, S. Tourret, P. Vukmirović, and U. Waldmann *Communications of the ACM* 66(4), 2023

Provers & Solvers

Lecture 3: \alpha-Superposition

Jasmin Blanchette LMU Munich

Partly based on slides by Alexander Bentkamp

Blah