Provers & Solvers

Lecture 3: A\-Superposition

Jasmin Blanchette
LMU Munich

Partly based on slides by
Alexander Bentkamp

Outline of These Lectures

1. Resolution

2. Superposifion

3. A-Superposition

4. CDCL and CDCL(T)
5. AVATAR

Disc

laimer

Relations between the Calculi

. ordered
resolution .
resolution
ground ground ordered

resolution resolution

Relations between the Calculi

paramodulation superposition
resolution .
jon
ground ground
paramodulatio superposition
ground ground ordered

resolution resolution

Relations between the Calculi

paramodulation superposition

ground round
paramodulation superposition

Relations between the Calculi

A-superposition

paramodulation sition

ground
\-superposition

ground round
paramodulation superposition

A Higher-Order Proof Goal

show (Y. i*+2i+1)

Proof assistant

(2) + (2 20) + (X)

Find Proof

A Higher-Order Proof Goal

Proof assistant
show (ZZ‘LI " +2i+1) = (Z:; ;2)4' (Z?=12i) T (ZL 1)

Find Proof

Lost in Translation

Lost in Translation

Design Goal for A-Superposition

A sound, complete, graceful generalization
of first-order superposition

Syntax of Higher-Order Logic

Given a signature, consisting of

« atomic types (e.g., bool, nat)

« symbols (e.g., 1, -, gcd) declared with
their types

Syntax of Higher-Order Logic

Given a signature, consisting of The terms are defined by these rules:
« atomic types (e.g., bool, nat) » A variable x declared with type T
» symbols (e.g., 1, -, gcd) declared with is a term of type T

their types o A symbol f declared with type T

Is a ferm of type T

o |ffhastypeT, an abstraction Ax: O. 1
Isafermof type O > T

o |ffhastype O - Tandt hastypeg,
an application tt'1s a ferm of type T

Syntax of Higher-Order Logic

Given a signature, consisting of The terms are defined by these rules:
« atomic types (e.g., bool, nat) « A variable x declared with type T
» symbols (e.g., 1, -, gcd) declared with is a term of type T

their types o A symbol f declared with type T

Is a ferm of type T

o |ffhastypeT, an abstraction Ax: O. 1
Isa ferm of type O > T

o |ffhastype O-> Tandt hastype g,

an application tt'1s a ferm of type T
Formulas are terms of type bool

Examples: Higher-Order Terms

g ax
fgax)by
pf(fa)(fab)
M. Ny.Qyx

1+ 2

af3n-Equivalence

Terms are considered equal up to the following three rules:

(@) (M. t(x)) = (\y. H(y))
(B) (M. t(x)) u=1t(u) if x does not occur free in u

(n) (M.tx) =t if xdoes not occur free in t

Examples: af3n-Equivalence

g(M.fxx)=g(\z.fz2z)

(M.fxx)a=faa

g(faa)=g(\y.faay)

Syntax of Clausal Higher-Order Logic

The atoms are defined by this rule:
e If t1 and t; are terms, then t; = > (viewed as an unordered pair) is an atom

The literals are defined by this rule:
e If Aisanatom, then A and —A are literals

The clauses are defined by this rule:
e IfLq, ... L,areliterals, thenL; Vv - Vv L, (viewed as a multiset) is a clause

We write L ifn=0

Syntax of Clausal Higher-Order Logic

The atoms are defined by this rule:
e If t1 and t; are terms, then t; = > (viewed as an unordered pair) is an atom

The literals are defined by this rule:
e If Aisanatom, then A and —A are literals

The clauses are defined by this rule:
e IfLq, ... L,areliterals, thenL; Vv - Vv L, (viewed as a multiset) is a clause

We write L ifn=0

@ e T,A,=,V,3can appear in terms
e Variables are understood as "for all"

Example: Summations

Goal:
(X 20+ 1) = (X, %) + (2, 20) + (X, 1)

Distributivity lemma:

Vig. X (fi+gi)=2"_ fi+X. gi

Proof idea:

(i P +2i+1) =20 (P +20) + 2 1= (X,) + (X, 20) + (22, 1)

Example: Summations

Goal:
(X 20+ 1) = (X, %) + (2, 20) + (X, 1)

sumInM.2+2i+T1)=sum 1T n(\.i2)+sum T n(N.2))+sum 1 n(Ni. 1)

Distributivity lemma:

Vig. X (fi+gi)=X"_ fi+X. gi

sum T n(\. fi+gi)=sum 1 n (M. fi)+sum 1 n(Ni.gi)

Proof idea:

(i P +2i+1) =20 (P +20) + 2 1= (X,) + (X, 20) + (22, 1)

Example: Summations

Example: Summations

sum 1 n(N.i2+2i+1)
zsum I n (M. i2+2)+sumTn(N. 1)

Example: Summations

sum 1 n(N.i2+2i+1)
zsum I n (M. i2+2)+sumTn(N. 1)

Example: Summations

sum 1 n(N.i2+2i+1)
zsum I n(M.i2+2)+sumTn(N. 1)

Example: Summations

Example: Summations

sumIn(\.2+2i+1)
zsum I n(N.i2+2i+1)

Example: Summations

sumIn(\.2+2i+1)
zsum I n(N.i2+2i+1)

Example: Summations

sum 1 n(N.i2+2i+1)
zsum I n (M. 2+2i+1)

Example: Summations

Example: Summations

Example: Summations

Example: Summations

Design Challenges for A-Superposition

1. The term order
2. Unification
3. Booleans

Challenge 1: The Term Order

In first-order superposition:

e A subterm must be smaller than the whole term:
e.g. ¢ <g(c) <f(g(c))

e Putting two terms in the same context should preserve the orientation:
e.g. if b>a then f(b, c) > f(a, c)

Challenge 1: The Term Order

In first-order superposition:
e A subterm must be smaller than the whole term:

e.g. ¢ < g(c) < f(g(c))
e Putting two terms in the same context should preserve the orientation:
e.g. if b>a then f(b, c) > f(a, c)

Issue in higher-order:
(\y. f(\z. 2)) > (A\z. 2)

Challenge 1: The Term Order

In first-order superposition:
e A subterm must be smaller than the whole term:

e.g. ¢ < g(c) < f(g(c))
e Putting two terms in the same context should preserve the orientation:
e.g. if b>a then f(b, c) > f(a, c)

Issue in higher-order:
(\y. f(\z. 2)) > (A\z. 2)

[1(g (f(\z. 2))) [1(g (f(\z. 2)))

} |

Challenge 1: The Term Order

In first-order superposition:
e A subterm must be smaller than the whole term:

e.g. ¢ < g(c) < f(g(c))
e Putting two terms in the same context should preserve the orientation:
e.g. if b>a then f(b, c) > f(a, c)

Issue in higher-order:
(\y. f(\z. 2)) > (A\z. 2)

[1(g (f(\z. 2))) [1(g (f(\z. 2)))

} |

f(\z.2z)

Challenge 1: The Term Order

In first-order superposition:
e A subterm must be smaller than the whole term:

e.g. ¢ < g(c) < f(g(c))
e Putting two terms in the same context should preserve the orientation:
e.g. if b>a then f(b, c) > f(a, c)

Issue in higher-order:
(\y. f(\z. 2)) > (A\z. 2)

[1(g (f(\z. 2))) [1(g (f(\z. 2)))

} }

f(\z. z) g (f (\z. 2))

Challenge 1: The Term Order

In first-order superposition:
e A subterm must be smaller than the whole term:

e.g. ¢ < g(c) < f(g(c))
e Putting two terms in the same context should preserve the orientation:
e.g. if b>a then f(b, c) > f(a, c)

Issue in higher-order:
(\y. f(\z. 2)) > (A\z. 2)

[1(g (f(\z. 2))) [1(g (f(\z. 2)))

} }

f(\z. 2) < g (f \z. 2))

Challenge 1: The Term Order

In first-order superposition:
e A subterm must be smaller than the whole term:

e.g. ¢ < g(c) < f(g(c))
e Putting two terms in the same context should preserve the orientation:
e.g. if b>a then f(b, c) > f(a, c)

Issue in higher-order:
(\y. f(\z. 2)) > (A\z. 2)

[1(g (f(\z. 2))) [1(g (f(\z. 2)))

} }

f (\z. z) S g (f (\z. 2))

Challenge 1: The Term Order

In first-order superposition:
e A subterm must be smaller than the whole term:

e.g. ¢ < g(c) < f(g(c))
e Putting two terms in the same context should preserve the orientation:
e.g. if b>a then f(b, c) > f(a, c)

Issue in higher-order:
(\y. f(\z. 2)) > (A\z. 2)

[1(g (f(\z. 2))) [1(g (f(\z. 2)))

} }
f (\z. z) >41 g (f (\z. 2))

Challenge 1: The Term Order

Solution:
e Weaken the second requirement: only
good contexts must preserve the orientation
e [he main superposition rule acts only on
good contexts
e Compensate with an extra calculus rule

Challenge 1: The Term Order

Solution:
e Weaken the second requirement: only
good contexts must preserve the orientation
e [he main superposition rule acts only on
good contexts
e Compensate with an extra calculus rule

Extra rule:
If the clause
Cvt=t

Is contained in I
and f, t' are functions,
then add the clause

Cvtx=tx
to F

Example: The Term Order

Example: The Term Order

B

fazfa

Example: The Term Order

B

fazfa

Example: The Term Order

B

f a

disallowed because | | a is not a good context

Example: The Term Order

Example: The Term Order

B

extra rule

gxr="Fx

Example: The Term Order

F

Example: The Term Order

F

fazfa

Example: The Term Order

F

fazfa

Example: The Term Order

F

Challenge 1bis: The Redundancy Criterion

In first-order logic:
e A ground clause C is redundant w.r.t. ground F
if Cq, ..., Ch e F are all smaller than C and

they together entail C

Challenge 1bis: The Redundancy Criterion

In first-order logic:
e A ground clause C is redundant w.r.t. ground F
if Cq, ..., Ch, e F are all smaller than C and

they together entail C

Higher-order issue:
e The conclusion of the extra inference rule would be
redundant w.r.t. the premise

Challenge 1bis: The Redundancy Criterion

In first-order logic:

e A ground clause C is redundant 0-f d F
if Cq, ..., Ch e F areall smaller
they together entail C l
gx="fux

Higher-order issue:
e The conclusion of the extra inference rule would be
redundant w.r.t. the premise

Challenge 1bis: The Redundancy Criterion

Solution:
e Use weaker notion of entailment

Examples:
e b=amakesfb="faredundant
e g="fdoesnot make ga =faredundant

Challenge 1bis: The Redundancy Criterion

Solution:
e Use weaker notion of entailment

Examples:
e b=amakesfb=faredundant
e g5 frdoes not make g.a= fiagredundant

Nonground Redundancy Criterion

A nonground clause C is redundant w.r.t. nonground F
if each clause in ground(C) is redundant w.r.t. ground(F')

Nonground Redundancy Criterion

A nonground clause C is redundant w.r.t. nonground F
if each clause in ground(C) is redundant w.r.t. ground(F')

Examples:
e bx=amakesf (bx)="faredundant
e g="fdoes not make g x =fxredundant

Example of a Redundancy Rule

Argument pruning:
If a clause of the form

C(y)

Is contained in F,

where one of y's arguments Is
computable from the others,
then remove the argument

Example of a Redundancy Rule

Argument pruning:
If a clause of the form ybb#yaa
C(»)

Is contained in F,

where one of y's arguments Is
computable from the others,
then remove the argument

Example of a Redundancy Rule

Argument pruning:
If a clause of the form —y-b-btyaa- yb#ya
C(»)

Is contained in F,

where one of y's arguments Is
computable from the others,
then remove the argument

Example of a Redundancy Rule

Argument pruning:
If a clause of the form —y-b-btyaa- yb#ya
C(»)

Is contained in F,

where one of y's arguments Is
computable from the others,
then remove the argument

yac#yab

Example of a Redundancy Rule

Argument pruning:
If a clause of the form —y-b-btyaa- yb#ya
C(»)

Is contained in F,

where one of y's arguments Is
computable from the others,
then remove the argument

YA) C # Y D

Example of a Redundancy Rule

Argument pruning:
If a clause of the form —y-b-btyaa- yb#ya
C()
YA) C # Y D
Is contained in F,
where one of y's arguments Is yac#zbd

computable from the others,
then remove the argument

Example of a Redundancy Rule

Argument pruning:
If a clause of the form —y-b-btyaa- yb#ya
C()
YA) C # Y D
Is contained in F,
where one of y's arguments Is bl y %2

computable from the others,
then remove the argument

Challenge 2: Unification

In first-order logic:
e Most general unifiers always exist and can be computed
e.g. unifying f(a, y) with f(x, b) yields the mgu {x~ a, y+ b}

Challenge 2: Unification

In first-order logic:
e Most general unifiers always exist and can be computed
e.g. unifying f(a, y) with f(x, b) yields the mgu {x~ a, y+ b}

In higher-order logic:
A. Most general unifiers do not always exist
e.g. unifying f (y a) and y (f a) yields infinitely many unifiers
{yp M. xt {yp M. fxi {ye M f(fx)}
B. Unification is undecidable
C. Applied variables can hide positions where inferences should be made

Challenge 2: Unification

Solutions:

A. Use a (possibly infinite) sequence of unifiers instead of mgu
B. Interweave unification and inferences

C. Infroduce a special "fluid" version of the main inference

Example: Fluid Inference

Example: Fluid Inference

B

1y M. g (fx)}

h (g (fb)) (g(fa))#h(g(fb)) (gc)

Example: Fluid Inference

B

1y M. g (fx)}

h (g (fb)) (g(fa))#h(g(fb)) (gc)

e

h (g (fb)) (gc)#h(g(fb))(gc)

Example: Fluid Inference

B

1y M. g (fx)}

h(g(fb)) (g(fa))#h(g(fb)) (gc)

e

h (g (fb)) (gc)#h(g(fb))(gc)

Example: Fluid Inference

B

1y M. g (fx)}

h(g(fb)) (g(fa))#h(g(fb)) (gc)

e

h (g (fb))(gc)#h(g(fb)) (gc)

Example: Fluid Inference

Example: Fluid Inference

B

Z (f a) is unified
with ya

Example: Fluid Inference

B

Z (f a) is unified
with ya
{zp g, y» M. g (fx)}

h(g(fb)) (gc)#h(g(fb)) (gc)

Challenge 3: Boolean Expressions

In first-order logic:
e Jerms and formulas are distinct syntactic entities
e Clausification is simple and focuses on the outer skeleton

Challenge 3: Boolean Expressions

In first-order logic:
e Jerms and formulas are distinct syntactic entities
e Clausification is simple and focuses on the outer skeleton

Higher-order issues:

A. Formulas can appear nested in terms, including under A's
e.g. (\x. if Ay. p x y then a else b)

B. We cannot perform clausification entirely in preprocessing

Challenge 3: Boolean Expressions

Solution:
e We introduce dedicated inference rules to clausify dynamically

Soundness of A-Superposition

The inference rules are easy to show sound

In particular, the extra rule iIs justified by argument congruence:
iIf [glY =[f]Y, then [g a]Y =[f a]Y for any a

Completeness of A-Superposition

If the clause set F is initially unsatisfiable*
and inferences are performed fairly,
then F will eventually contain L

Completeness of A-Superposition

If the clause set F is initially unsatisfiable*
and inferences are performed fairly,
then F will eventually contain L

* with respect to the so-called Henkin semantics

Standard Saturation Loop

Passive Active

Standard Saturation Loop

Passive Active

Standard Saturation Loop

Passive Active

Generalized Saturation Loop

Streams Passive Active

Generalized Saturation Loop

Streams Passive Active

Generalized Saturation Loop

Streams Passive Active

Competition Results (CASC 2023)

pperpii Zipperpin E Leo-ITI | Satallax | cveS Lash | LEO-II | Duper
1.0

Vampire |Zip V)
48 2.1.999 31 1.7.8 34 105 1.13 1.7.0

Solved/soo 452500 438500 407 500 302500 268500 258500 208500 58500 361500
Solutions 452 909 438 37% 407 81% 302 60% 268 539 258519 196 394 58 1% 36 7%

_ E E |Zipperpi cve5 | Satallax | Lash | Leo-III | Duper
3.0 3.1 2.1.9999 105 34 1.13 178 1.0

Solved/1000 467 1000 467 11000 4621000 3621000 2781000 21911000 125/1000 511000

Solutions 467 s6% 467 16% 462 16% 362 36% 278 27% 219214 125 129 51 5%

Competition Results (CASC 2023)

Vampir Zipperpin E eo-IIlI | Satallax | cveS Lash | LEO-II

48 2.1.999 31 178 34 105 1.13 170
Solved/soo 4525 438500 407 500 302500 268500 258500 208500 58sa
Solutions 407 81% 302 60% 268 539 258519 196 30

E E Zipperp cvesS Satallax | Lash Leo-III§ [Duper

3.0 3.1 2.1.9999 105 34 1.13 178 1.0
Solved/1000 467 11000 467 11000 4621000 3621000 2781000 21911000 125/108 511000
Solutions 467 s6% 467 16% 462 s6% 362 36% 278 27% 219214 12512 51 5%

References

Superposition with Lambdas
A. Bentkamp, J. Blanchette, S. Tourret, P. Vukmirovié, and U. Waldmann
Journal of Automated Reasoning 65(7), 2021

Superposition for Higher-Order Logic
A. Bentkamp, J. Blanchette, S. Tourret, and P. Vukmirovi¢
Journal of Automated Reasoning 67, article number 10, 2023

Mechanical Mathematicians

A. Bentkamp, J. Blanchette, V. Nummelin, S. Tourret, P. Vukmirovi¢, and U. Waldmann
Communications of the ACM 66(4), 2023

Provers & Solvers

Lecture 3: A\-Superposition

Jasmin Blanchette
LMU Munich

Partly based on slides by
Alexander Bentkamp

