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Outline of These Lectures

1. Resolution

2. Superposifion

3. A-Superposition

4. CDCL and CDCL(T)
5. AVATAR
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A Higher-Order Proof Goal

show (Y. i*+2i+1)

Proof assistant

(2 ) + (2 20) + (X )

Find Proof




A Higher-Order Proof Goal

Proof assistant
show (ZZ‘LI " +2i+1) = (Z:; ;2)4' (Z?=12i) T (ZL 1)

Find Proof
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Design Goal for A-Superposition

A sound, complete, graceful generalization
of first-order superposition



Syntax of Higher-Order Logic

Given a signature, consisting of

« atomic types (e.g., bool, nat)

« symbols (e.g., 1, -, gcd) declared with
their types
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Syntax of Higher-Order Logic

Given a signature, consisting of The terms are defined by these rules:
« atomic types (e.g., bool, nat) « A variable x declared with type T
» symbols (e.g., 1, -, gcd) declared with is a term of type T

their types o A symbol f declared with type T

Is a ferm of type T

o |ffhastypeT, an abstraction Ax: O. 1
Isa ferm of type O > T

o |ffhastype O-> Tandt hastype g,

an application tt'1s a ferm of type T
Formulas are terms of type bool



Examples: Higher-Order Terms

g ax
fgax)by
pf(fa)(fab)
M. Ny.Qyx

1+ 2



af3n-Equivalence

Terms are considered equal up to the following three rules:

(@) (M. t(x)) = (\y. H(y))
(B) (M. t(x)) u=1t(u) if x does not occur free in u

(n) (M.tx) =t if xdoes not occur free in t



Examples: af3n-Equivalence

g(M.fxx)=g(\z.fz2z)

(M.fxx)a=faa

g(faa)=g(\y.faay)



Syntax of Clausal Higher-Order Logic

The atoms are defined by this rule:
e If t1 and t; are terms, then t; = > (viewed as an unordered pair) is an atom

The literals are defined by this rule:
e If Aisanatom, then A and —A are literals

The clauses are defined by this rule:
e IfLq, ... L,areliterals, thenL; Vv - Vv L, (viewed as a multiset) is a clause

We write L ifn=0




Syntax of Clausal Higher-Order Logic

The atoms are defined by this rule:
e If t1 and t; are terms, then t; = > (viewed as an unordered pair) is an atom

The literals are defined by this rule:
e If Aisanatom, then A and —A are literals

The clauses are defined by this rule:
e IfLq, ... L,areliterals, thenL; Vv - Vv L, (viewed as a multiset) is a clause

We write L ifn=0

@ e T,A,=,V,3can appear in terms
e Variables are understood as "for all"



Example: Summations

Goal:
(X 20+ 1) = (X, %) + (2, 20) + (X, 1)

Distributivity lemma:

Vig. X (fi+gi)=2"_ fi+X.  gi

Proof idea:

(i P +2i+1) =20 (P +20) + 2 1= (X, ) + (X, 20) + (22, 1)



Example: Summations

Goal:
(X 20+ 1) = (X, %) + (2, 20) + (X, 1)

sumInM.2+2i+T1)=sum 1T n(\.i2)+sum T n(N.2))+sum 1 n(Ni. 1)

Distributivity lemma:

Vig. X (fi+gi)=X"_ fi+X.  gi

sum T n(\. fi+gi)=sum 1 n (M. fi)+sum 1 n(Ni.gi)

Proof idea:

(i P +2i+1) =20 (P +20) + 2 1= (X, ) + (X, 20) + (22, 1)
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sumIn(\.2+2i+1)
zsum I n(N.i2+2i+1)



Example: Summations

sum 1 n(N.i2+2i+1)
zsum I n (M. 2+2i+1)



Example: Summations




Example: Summations




Example: Summations




Example: Summations




Design Challenges for A-Superposition

1. The term order
2. Unification
3. Booleans



Challenge 1: The Term Order

In first-order superposition:

e A subterm must be smaller than the whole term:
e.g. ¢ <g(c) <f(g(c))

e Putting two terms in the same context should preserve the orientation:
e.g. if b>a then f(b, c) > f(a, c)
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e.g. ¢ < g(c) < f(g(c))
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Challenge 1: The Term Order

In first-order superposition:
e A subterm must be smaller than the whole term:

e.g. ¢ < g(c) < f(g(c))
e Putting two terms in the same context should preserve the orientation:
e.g. if b>a then f(b, c) > f(a, c)

Issue in higher-order:
(\y. f(\z. 2)) > (A\z. 2)

[1(g (f(\z. 2))) [1(g (f(\z. 2)))

} }
f (\z. z) >41 g (f (\z. 2))



Challenge 1: The Term Order

Solution:
e Weaken the second requirement: only
good contexts must preserve the orientation
e [he main superposition rule acts only on
good contexts
e Compensate with an extra calculus rule



Challenge 1: The Term Order

Solution:
e Weaken the second requirement: only
good contexts must preserve the orientation
e [he main superposition rule acts only on
good contexts
e Compensate with an extra calculus rule

Extra rule:
If the clause
Cvt=t

Is contained in I
and f, t' are functions,
then add the clause

Cvtx=tx
to F



Example: The Term Order
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Example: The Term Order

B

f a

disallowed because | | a is not a good context



Example: The Term Order




Example: The Term Order

B

extra rule

gxr="Fx



Example: The Term Order

F
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F
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Example: The Term Order

F




Challenge 1bis: The Redundancy Criterion

In first-order logic:
e A ground clause C is redundant w.r.t. ground F
if Cq, ..., Ch e F are all smaller than C and

they together entail C
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Challenge 1bis: The Redundancy Criterion

In first-order logic:

e A ground clause C is redundant 0-f d F
if Cq, ..., Ch e F areall smaller
they together entail C l
gx="fux

Higher-order issue:
e The conclusion of the extra inference rule would be
redundant w.r.t. the premise



Challenge 1bis: The Redundancy Criterion

Solution:
e Use weaker notion of entailment

Examples:
e b=amakesfb="faredundant
e g="fdoesnot make ga =faredundant



Challenge 1bis: The Redundancy Criterion

Solution:
e Use weaker notion of entailment

Examples:
e b=amakesfb=faredundant
e g5 frdoes not make g.a= fiagredundant



Nonground Redundancy Criterion

A nonground clause C is redundant w.r.t. nonground F
if each clause in ground(C) is redundant w.r.t. ground(F')



Nonground Redundancy Criterion

A nonground clause C is redundant w.r.t. nonground F
if each clause in ground(C) is redundant w.r.t. ground(F')

Examples:
e bx=amakesf (bx)="faredundant
e g="fdoes not make g x =fxredundant



Example of a Redundancy Rule

Argument pruning:
If a clause of the form

C(y)

Is contained in F,

where one of y's arguments Is
computable from the others,
then remove the argument
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Example of a Redundancy Rule

Argument pruning:
If a clause of the form —y-b-btyaa- yb#ya
C(»)

Is contained in F,

where one of y's arguments Is
computable from the others,
then remove the argument

yac#yab



Example of a Redundancy Rule

Argument pruning:
If a clause of the form —y-b-btyaa- yb#ya
C(»)

Is contained in F,

where one of y's arguments Is
computable from the others,
then remove the argument

YA ) C # Y D



Example of a Redundancy Rule

Argument pruning:
If a clause of the form —y-b-btyaa- yb#ya
C()
YA ) C # Y D
Is contained in F,
where one of y's arguments Is yac#zbd

computable from the others,
then remove the argument



Example of a Redundancy Rule

Argument pruning:
If a clause of the form —y-b-btyaa- yb#ya
C()
YA ) C # Y D
Is contained in F,
where one of y's arguments Is bl y %2

computable from the others,
then remove the argument



Challenge 2: Unification

In first-order logic:
e Most general unifiers always exist and can be computed
e.g. unifying f(a, y) with f(x, b) yields the mgu {x~ a, y+ b}



Challenge 2: Unification

In first-order logic:
e Most general unifiers always exist and can be computed
e.g. unifying f(a, y) with f(x, b) yields the mgu {x~ a, y+ b}

In higher-order logic:
A. Most general unifiers do not always exist
e.g. unifying f (y a) and y (f a) yields infinitely many unifiers
{yp M. xt {yp M. fxi {ye M f(fx)}
B. Unification is undecidable
C. Applied variables can hide positions where inferences should be made



Challenge 2: Unification

Solutions:

A. Use a (possibly infinite) sequence of unifiers instead of mgu
B. Interweave unification and inferences

C. Infroduce a special "fluid" version of the main inference



Example: Fluid Inference
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B

1y M. g (fx)}

h(g(fb)) (g(fa))#h(g(fb)) (gc)

e

h (g (fb))(gc)#h(g(fb)) (gc)
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Example: Fluid Inference

B

Z (f a) is unified
with ya
{zp g, y» M. g (fx)}

h(g(fb)) (gc)#h(g(fb)) (gc)



Challenge 3: Boolean Expressions

In first-order logic:
e Jerms and formulas are distinct syntactic entities
e Clausification is simple and focuses on the outer skeleton



Challenge 3: Boolean Expressions

In first-order logic:
e Jerms and formulas are distinct syntactic entities
e Clausification is simple and focuses on the outer skeleton

Higher-order issues:

A. Formulas can appear nested in terms, including under A's
e.g. (\x. if Ay. p x y then a else b)

B. We cannot perform clausification entirely in preprocessing



Challenge 3: Boolean Expressions

Solution:
e We introduce dedicated inference rules to clausify dynamically



Soundness of A-Superposition

The inference rules are easy to show sound

In particular, the extra rule iIs justified by argument congruence:
iIf [glY =[f]Y, then [g a]Y =[f a]Y for any a



Completeness of A-Superposition

If the clause set F is initially unsatisfiable*
and inferences are performed fairly,
then F will eventually contain L



Completeness of A-Superposition

If the clause set F is initially unsatisfiable*
and inferences are performed fairly,
then F will eventually contain L

* with respect to the so-called Henkin semantics
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Competition Results (CASC 2023)

pperpii Zipperpin E Leo-ITI | Satallax | cveS Lash | LEO-II | Duper
1.0

Vampire |Zip V)
48 2.1.999 31 1.7.8 34 105 1.13 1.7.0

Solved/soo 452500 438500 407 500 302500 268500 258500 208500 58500 361500
Solutions 452 909 438 37% 407 81% 302 60% 268 539 258519 196 394 58 1% 36 7%

_ E E |Zipperpi cve5 | Satallax | Lash | Leo-III | Duper
3.0 3.1 2.1.9999 105 34 1.13 178 1.0

Solved/1000 467 1000 467 11000 4621000 3621000 2781000 21911000 125/1000 511000

Solutions 467 s6% 467 16% 462 16% 362 36% 278 27% 219214 125 129 51 5%




Competition Results (CASC 2023)

Vampir Zipperpin E eo-IIlI | Satallax | cveS Lash | LEO-II

48 2.1.999 31 178 34 105 1.13 170
Solved/soo 4525 438500 407 500 302500 268500 258500 208500 58sa
Solutions 407 81% 302 60% 268 539 258519 196 30

E E Zipperp cvesS Satallax | Lash Leo-III§ [ Duper

3.0 3.1 2.1.9999 105 34 1.13 178 1.0
Solved/1000 467 11000 467 11000 4621000 3621000 2781000 21911000 125/108 511000
Solutions 467 s6% 467 16% 462 s6% 362 36% 278 27% 219214 12512 51 5%
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