Verification of Linear Dynamical Systems

James Worrell

Department of Computer Science Oxford University

Marktoberdorf 2023

A Landscape

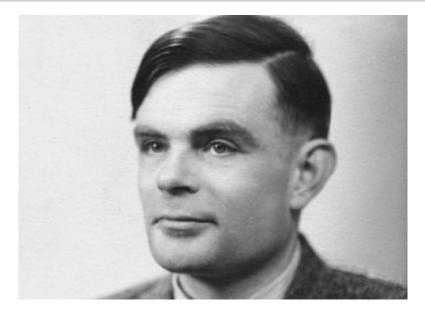
Halting Problem:

• Skolem's Problem as the Halting Problem for linear loops

- Halting Problem:
 - Skolem's Problem as the Halting Problem for linear loops
- **2** Termination analysis:
 - Termination for linear constraint loops

- Halting Problem:
 - Skolem's Problem as the Halting Problem for linear loops
- **2** Termination analysis:
 - Termination for linear constraint loops
- Invariant synthesis:
 - Computing polynomial invariants for affine programs

Part I: Halting Problem



What is the simplest class of programs for which decidability of the Halting Problem is open?

$$x := 1;$$

 $y := 0;$
 $z := 0;$
while $x \neq 0$ do
 $x := 2x + y;$
 $y := y + 3 - z;$
 $z := -4z + 6;$

$$x := 1;$$

 $y := 0;$
 $z := 0;$
while $x \neq 0$ do
 $x := 2x + y;$
 $y := y + 3 - z;$
 $z := -4z + 6;$

 $\mathbf{x} := \mathbf{a};$ while $x_1 \neq 0$ do $\mathbf{x} := \mathbf{M}\mathbf{x};$

$$x := 1;$$

 $y := 0;$
 $z := 0;$
while $x \neq 0$ do
 $x := 2x + y;$
 $y := y + 3 - z;$
 $z := -4z + 6;$

Skolem Problem:

$$egin{aligned} \mathbf{x} &:= \mathbf{a}; \ ext{while} & x_1
eq 0 & ext{do} \ & \mathbf{x} &:= \mathbf{M}\mathbf{x}; \end{aligned}$$

$$x := 1;$$

 $y := 0;$
 $z := 0;$
while $x \neq 0$ do
 $x := 2x + y;$
 $y := y + 3 - z;$
 $z := -4z + 6;$

Skolem Problem:

f x:=f a;while $x_1
eq 0$ do f x:=f M x;

f x:=f a;while $x_1\geq 0$ do f x:=f M x;

$$x := 1;$$

 $y := 0;$
 $z := 0;$
while $x \neq 0$ do
 $x := 2x + y;$
 $y := y + 3 - z;$
 $z := -4z + 6;$

Skolem Problem:

f x:=f a;while $x_1
eq 0$ do f x:=f M x;

Positivity Problem:

A linear recurrence sequence (LRS) is a sequence $\langle u_0, u_1, u_2, \ldots \rangle$ in \mathbb{Q} such that there are constants a_1, \ldots, a_k and, $\forall n \ge 0$: $u_{n+k} = a_1 u_{n+k-1} + a_2 u_{n+k-2} + \ldots + a_k u_n$.

A linear recurrence sequence (LRS) is a sequence $\langle u_0, u_1, u_2, \ldots \rangle$ in \mathbb{Q} such that there are constants a_1, \ldots, a_k and, $\forall n \ge 0$: $u_{n+k} = a_1 u_{n+k-1} + a_2 u_{n+k-2} + \ldots + a_k u_n$.

 \bullet e.g. the Fibonacci numbers $\langle 0,1,1,2,3,5,8,\ldots\rangle$

A linear recurrence sequence (LRS) is a sequence $\langle u_0, u_1, u_2, \ldots \rangle$ in \mathbb{Q} such that there are constants a_1, \ldots, a_k and, $\forall n \ge 0$: $u_{n+k} = a_1 u_{n+k-1} + a_2 u_{n+k-2} + \ldots + a_k u_n$.

- \bullet e.g. the Fibonacci numbers $\langle 0,1,1,2,3,5,8,\ldots\rangle$
- k is the **order** of the sequence
 - Fibonacci has order 2 $(u_{n+2} = u_{n+1} + u_n)$

A linear recurrence sequence (LRS) is a sequence $\langle u_0, u_1, u_2, \ldots \rangle$ in \mathbb{Q} such that there are constants a_1, \ldots, a_k and, $\forall n \ge 0$: $u_{n+k} = a_1 u_{n+k-1} + a_2 u_{n+k-2} + \ldots + a_k u_n$.

- \bullet e.g. the Fibonacci numbers $\langle 0,1,1,2,3,5,8,\ldots\rangle$
- k is the **order** of the sequence
 - Fibonacci has order 2 $(u_{n+2} = u_{n+1} + u_n)$
 - Binet formula: $u_n = \sum_{i=1}^{s} P_i(n) \lambda_i^n$

A linear recurrence sequence (LRS) is a sequence $\langle u_0, u_1, u_2, \ldots \rangle$ in \mathbb{Q} such that there are constants a_1, \ldots, a_k and, $\forall n \ge 0$: $u_{n+k} = a_1 u_{n+k-1} + a_2 u_{n+k-2} + \ldots + a_k u_n$.

- \bullet e.g. the Fibonacci numbers $\langle 0,1,1,2,3,5,8,\ldots\rangle$
- k is the **order** of the sequence
 - Fibonacci has order 2 $(u_{n+2} = u_{n+1} + u_n)$
 - Binet formula: $u_n = \sum_{i=1}^{s} P_i(n) \lambda_i^n$

Problem SKOLEM

Instance: An LRS $\langle u_0, u_1, u_2, \ldots \rangle$ Question: Does $\exists n \ge 0$ such that $u_n = 0$?

The Positivity Problem

The Positivity Problem

Problem POSITIVITY

<u>Instance</u>: An LRS $\langle u_0, u_1, u_2, \ldots \rangle$ <u>Question</u>: Is $u_n \ge 0$ for all n?

The Positivity Problem

Problem POSITIVITY

<u>Instance</u>: An LRS $\langle u_0, u_1, u_2, \ldots \rangle$ <u>Question</u>: Is $u_n \ge 0$ for all n?

Problem ULTIMATE POSITIVITY

<u>Instance</u>: An LRS $\langle u_0, u_1, u_2, ... \rangle$ <u>Question</u>: Is $u_n \ge 0$ for all but finitely many n?

The Skolem Problem is Open

"It is faintly outrageous that this problem is still open; it is saying that we do not know how to decide the Halting Problem even for 'linear' automata!"

Terence Tao

The Skolem Problem is Open

"It is faintly outrageous that this problem is still open; it is saying that we do not know how to decide the Halting Problem even for 'linear' automata!"

Terence Tao

"A mathematical embarrassment . . . " Richard Lipton

The Skolem-Mahler-Lech Theorem

Fact: any LRS can be effectively decomposed into finitely many *non-degenerate* LRS.

Fact: any LRS can be effectively decomposed into finitely many *non-degenerate* LRS.

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros $\{n \in \mathbb{N} : u_n = 0\}$ of a non-degenerate LRS $\langle u_0, u_1, u_2, \ldots \rangle$ is finite.

Fact: any LRS can be effectively decomposed into finitely many *non-degenerate* LRS.

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros $\{n \in \mathbb{N} : u_n = 0\}$ of a non-degenerate LRS $\langle u_0, u_1, u_2, \ldots \rangle$ is finite.

• Decidability of the Skolem Problem is equivalent to being able to compute the finite set of zeros of any given non-degenerate LRS

Fact: any LRS can be effectively decomposed into finitely many *non-degenerate* LRS.

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros $\{n \in \mathbb{N} : u_n = 0\}$ of a non-degenerate LRS $\langle u_0, u_1, u_2, \ldots \rangle$ is finite.

- Decidability of the Skolem Problem is equivalent to being able to compute the finite set of zeros of any given non-degenerate LRS
- Unfortunately, all known proofs of the Skolem-Mahler-Lech Theorem make use of *non-constructive p*-adic techniques

• Given two NFA A and B, is every word accepted by A also accepted by B?

• Given two NFA A and B, does every word have at least as many accepting runs in B as in A?

• Given two NFA A and B, for every n, does B accept at least as many words of length n as A?

• Given a Markov chain over states s_1, \ldots, s_k with initial state s_1 , is there some timepoint from which the probability to be in state s_k is always greater than 1/2?

- Given two NFA A and B, is every word accepted by A also accepted by B?
 - PSPACE-COMPLETE
- Given two NFA A and B, does every word have at least as many accepting runs in B as in A?

• Given two NFA A and B, for every n, does B accept at least as many words of length n as A?

• Given a Markov chain over states s_1, \ldots, s_k with initial state s_1 , is there some timepoint from which the probability to be in state s_k is always greater than 1/2?

- Given two NFA A and B, is every word accepted by A also accepted by B?
 - PSPACE-COMPLETE
- Given two NFA A and B, does every word have at least as many accepting runs in B as in A?
 UNDECIDABLE
- Given two NFA A and B, for every n, does B accept at least as many words of length n as A?

• Given a Markov chain over states s_1, \ldots, s_k with initial state s_1 , is there some timepoint from which the probability to be in state s_k is always greater than 1/2?

- Given two NFA A and B, is every word accepted by A also accepted by B?
 - PSPACE-COMPLETE
- Given two NFA A and B, does every word have at least as many accepting runs in B as in A?
 UNDECIDABLE
- Given two NFA A and B, for every n, does B accept at least as many words of length n as A?
 - POSITIVITY-COMPLETE
- Given a Markov chain over states s_1, \ldots, s_k with initial state s_1 , is there some timepoint from which the probability to be in state s_k is always greater than 1/2?

- Given two NFA A and B, is every word accepted by A also accepted by B?
 - PSPACE-COMPLETE
- Given two NFA A and B, does every word have at least as many accepting runs in B as in A?
 UNDECIDABLE
- Given two NFA A and B, for every n, does B accept at least as many words of length n as A?
 - POSITIVITY-COMPLETE
- Given a Markov chain over states s_1, \ldots, s_k with initial state s_1 , is there some timepoint from which the probability to be in state s_k is always greater than 1/2?
 - ULTIMATE POSITIVITY-COMPLETE

Some Other Application Areas

SKOLEM and POSITIVITY arise in many other areas (often in hardness results), e.g.:

Some Other Application Areas

SKOLEM and POSITIVITY arise in many other areas (often in hardness results), e.g.:

- Theoretical biology
 - analysis of L-systems
 - population dynamics
- Software verification / program analysis
- Dynamical systems
- Differential privacy
- (Weighted) automata and games
- Analysis of stochastic systems
- Control theory
- Quantum computing
- Statistical physics
- Formal power series
- Combinatorics
- . . .

The Skolem Problem at Low Orders

Skolem Problem

Does $\exists n$ such that $u_n = 0$?

Let u_n be a linear recurrence sequence of fixed order

The Skolem Problem at Low Orders

Skolem Problem

Does $\exists n$ such that $u_n = 0$?

Let u_n be a linear recurrence sequence of fixed order

Theorem (folklore)

For orders 1 and 2, Skolem is decidable.

The Skolem Problem at Low Orders

Skolem Problem

Does $\exists n$ such that $u_n = 0$?

Let u_n be a linear recurrence sequence of fixed order

Theorem (folklore)

For orders 1 and 2, Skolem is decidable.

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

For orders 3 and 4, Skolem is decidable.

The Skolem Problem at Low Orders

Skolem Problem

Does $\exists n$ such that $u_n = 0$?

Let u_n be a linear recurrence sequence of fixed order

Theorem (folklore)

For orders 1 and 2, Skolem is decidable.

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

For orders 3 and 4, Skolem is decidable.

Critical ingredient is Baker's theorem for linear forms in logarithms, which earned Baker the Fields Medal in 1970.

• e.g., the Fibonacci sequence:

$$u_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

• e.g., the Fibonacci sequence:

$$u_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

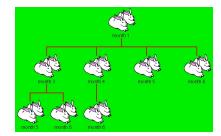
• The "vast majority" of LRS are simple...

• e.g., the Fibonacci sequence:

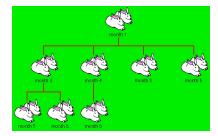
$$u_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

• The "vast majority" of LRS are simple...

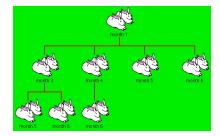
Simple LRS correspond precisely to diagonalisable matrices



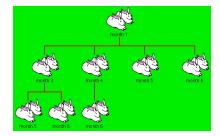
 $\langle 1,1,2,3,5,8,13,21,34,55,89,144,\ldots\rangle$



 $\langle 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots \rangle$ $\langle 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, \ldots \rangle \pmod{2}$

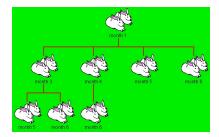


 $\langle 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots \rangle$ $\langle 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, \ldots \rangle \pmod{2}$ $\langle 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, \ldots \rangle \pmod{3}$

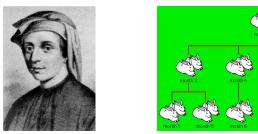


$$\langle 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots \rangle$$

 $\langle 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, \ldots \rangle \pmod{2}$
 $\langle 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, \ldots \rangle \pmod{3}$
 $\langle 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, \ldots \rangle \pmod{4}$

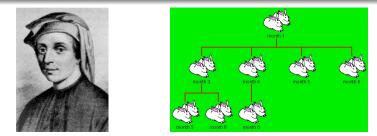


 $\begin{array}{l} \langle 1,1,2,3,5,8,13,21,34,55,89,144,\ldots\rangle\\ \langle 1,1,0,1,1,0,1,1,0,1,1,0,\ldots\rangle \pmod{2}\\ \langle 1,1,2,0,2,2,1,0,1,1,2,0,\ldots\rangle \pmod{3}\\ \langle 1,1,2,3,1,0,1,1,2,3,1,0,\ldots\rangle \pmod{4}\\ \langle 1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,\ldots\rangle \pmod{5} \end{array}$



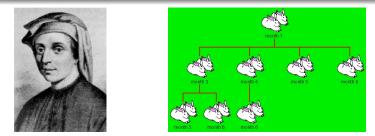
$$\begin{array}{l} \langle 1,1,2,3,5,8,13,21,34,55,89,144,\ldots\rangle \\ \langle 1,1,0,1,1,0,1,1,0,1,1,0,\ldots\rangle \pmod{2} \\ \langle 1,1,2,0,2,2,1,0,1,1,2,0,\ldots\rangle \pmod{3} \\ \langle 1,1,2,3,1,0,1,1,2,3,1,0,\ldots\rangle \pmod{4} \\ \langle 1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,\ldots\rangle \pmod{5} \end{array}$$

Reversibility



- $\langle 1,1,2,3,5,8,13,21,34,55,89,144,\ldots\rangle$
 - The Fibonacci sequence has a zero mod m for every m

Reversibility



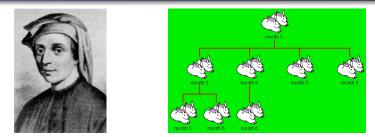
 $\langle 1,1,2,3,5,8,13,21,34,55,89,144,\ldots\rangle$

- The Fibonacci sequence has a zero mod *m* for every *m*
- The sequence has bi-infinite extension

 $\langle \dots, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8 \dots \rangle$

that contains a zero

Reversibility



$\langle 1,1,2,3,5,8,13,21,34,55,89,144,\ldots\rangle$

- The Fibonacci sequence has a zero mod *m* for every *m*
- The sequence has bi-infinite extension

$$\langle \dots, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8 \dots \rangle$$

that contains a zero

• The bi-infinite extension is periodic modulo *m* for every *m*

Skolem Conjecture

ANWENDUNG EXPONENTIELLER KONGRUENZEN ZUM BEWEIS DER UNLÖSBARKEIT GEWISSER DIOPHANTISCHER GLEICHUNGEN

VON

TH. SKOLEM

Avhandlinger utgitt av Det Norske Videnskaps-Akademi i Oslo I. Mat.-Naturv, Klasse, 1937. No. 12

• If a **simple bi-infinite** LRS over the rationals has no zeros, then it has no zeros modulo *some* integer *m*.

Skolem Conjecture

ANWENDUNG EXPONENTIELLER KONGRUENZEN ZUM BEWEIS DER UNLÖSBARKEIT GEWISSER DIOPHANTISCHER GLEICHUNGEN

VON

TH. SKOLEM

Avhandlinger utgitt av Det Norske Videnskaps-Akademi i Oslo I. Mat.-Naturv, Klasse, 1937, No. 12

- If a **simple bi-infinite** LRS over the rationals has no zeros, then it has no zeros modulo *some* integer *m*.
- Why simple?

Skolem Conjecture

ANWENDUNG EXPONENTIELLER KONGRUENZEN ZUM BEWEIS DER UNLÖSBARKEIT GEWISSER DIOPHANTISCHER GLEICHUNGEN

VON

TH. SKOLEM

Avhandlinger utgitt av Det Norske Videnskaps-Akademi i Oslo I. Mat.-Naturv, Klasse, 1937, No. 12

- If a **simple bi-infinite** LRS over the rationals has no zeros, then it has no zeros modulo *some* integer *m*.
- Why simple? Consider $u_n = 2^n(2n+1)$

ANWENDUNG EXPONENTIELLER KONGRUENZEN ZUM BEWEIS DER UNLÖSBARKEIT GEWISSER DIOPHANTISCHER GLEICHUNGEN

VON

TH. SKOLEM

Avhandlinger utgitt av Det Norske Videnskaps-Akademi i Oslo I. Mat.-Naturv, Klasse, 1937, No. 12

- If a **simple bi-infinite** LRS over the rationals has no zeros, then it has no zeros modulo *some* integer *m*.
- Why simple? Consider $u_n = 2^n(2n+1)$
- One-way version fails to hold

<u>Instance</u>: A bi-LRS $\langle \dots, u_{-2}, u_{-1}, u_0, u_1, u_2, \dots \rangle$ over \mathbb{Q} *Question*: Does $\exists n \in \mathbb{Z}$ such that $u_n = 0$?

<u>Instance</u>: A bi-LRS $\langle \dots, u_{-2}, u_{-1}, u_0, u_1, u_2, \dots \rangle$ over \mathbb{Q} *Question*: Does $\exists n \in \mathbb{Z}$ such that $u_n = 0$?

• Decidable for simple LRS assuming Skolem's Conjecture.

<u>Instance</u>: A bi-LRS $\langle \dots, u_{-2}, u_{-1}, u_0, u_1, u_2, \dots \rangle$ over \mathbb{Q} *Question*: Does $\exists n \in \mathbb{Z}$ such that $u_n = 0$?

- Decidable for simple LRS assuming Skolem's Conjecture.
- How are the Skolem and Bi-Skolem Problems related?

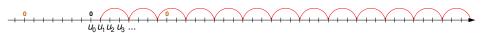
<u>Instance</u>: A bi-LRS $\langle \dots, u_{-2}, u_{-1}, u_0, u_1, u_2, \dots \rangle$ over \mathbb{Q} *Question*: Does $\exists n \in \mathbb{Z}$ such that $u_n = 0$?

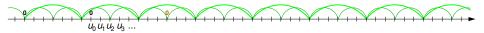
- Decidable for simple LRS assuming Skolem's Conjecture.
- How are the Skolem and Bi-Skolem Problems related?
- Can one use an oracle for Bi-Skolem to compute all zeros of a bi-LRS?

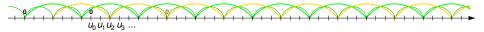
Theorem (Bilu, Luca, Pursar, Ouaknine, Nieuwveld, W. 22) For LRS of order 5 the Skolem and Bi-Skolem Problems are interreducible. Theorem (Bilu, Luca, Pursar, Ouaknine, Nieuwveld, W. 22) For LRS of order 5 the Skolem and Bi-Skolem Problems are interreducible. For LRS of all orders the Skolem and Bi-Skolem problems are irreducible assuming the p-adic Schanuel conjecture. Theorem (Bilu, Luca, Pursar, Ouaknine, Nieuwveld, W. 22) For LRS of order 5 the Skolem and Bi-Skolem Problems are interreducible. For LRS of all orders the Skolem and Bi-Skolem problems are irreducible assuming the p-adic Schanuel conjecture.

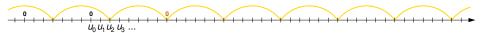
Lemma (Zero Isolation)

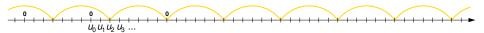
Assuming the p-adic Schanuel Conjecture, given a bi-infinite LRS $\langle u_n \rangle_{n=-\infty}^{\infty}$ one can compute L such that $u_{Ln} \neq 0$ for all $n \neq 0$.

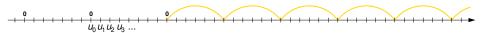
















Schanuel's Conjecture (early 1960s)

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then $\{\alpha_1, \ldots, \alpha_n, e^{\alpha_1}, \ldots, e^{\alpha_n}\}$, contains (at least) *n* numbers that are algebraically independent over \mathbb{Q} .

Schanuel's Conjecture (early 1960s)

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then $\{\alpha_1, \ldots, \alpha_n, e^{\alpha_1}, \ldots, e^{\alpha_n}\}$, contains (at least) *n* numbers that are algebraically independent over \mathbb{Q} .

In other words: for any polynomial $P(x_1, \ldots, x_n)$ with rational (or algebraic) coefficients, if $P(\beta_1, \ldots, \beta_n) = 0$, then P must be the zero polynomial.

- e is transcendental (Charles Hermite, 1873)
- π is transcendental (Ferdinand von Lindemann, 1882)

- e is transcendental (Charles Hermite, 1873)
- π is transcendental (Ferdinand von Lindemann, 1882)
- What about $e + \pi$ and $e\pi$?

- e is transcendental (Charles Hermite, 1873)
- π is transcendental (Ferdinand von Lindemann, 1882)
- What about $e + \pi$ and $e\pi$?

Consider

$$p(x) = (x - e)(x - \pi)$$

= $x^2 - (e + \pi)x + e\pi$

- e is transcendental (Charles Hermite, 1873)
- π is transcendental (Ferdinand von Lindemann, 1882)
- What about $e + \pi$ and $e\pi$?

Consider

$$p(x) = (x - e)(x - \pi)$$

= $x^2 - (e + \pi)x + e\pi$

If both $e + \pi$ and $e\pi$ were rational, then e and π would be algebraic, contradiction.

Schanuel's Conjecture — Example

• So what about $e + \pi$ and $e\pi$ or (say) $e^5\pi^3 - e^2\pi^7 + e^2$?

• So what about $e + \pi$ and $e\pi$ or (say) $e^5\pi^3 - e^2\pi^7 + e$? Apply Schanuel's Conjecture with $\alpha_1 = 1$ and $\alpha_2 = i\pi$: • So what about $e + \pi$ and $e\pi$ or (say) $e^5\pi^3 - e^2\pi^7 + e$? Apply Schanuel's Conjecture with $\alpha_1 = 1$ and $\alpha_2 = i\pi$:

$$\{1, i\pi, e^1, e^{i\pi}\} = \{1, i\pi, e, -1\}$$

• So what about $e + \pi$ and $e\pi$ or (say) $e^5\pi^3 - e^2\pi^7 + e^2$ Apply Schanuel's Conjecture with $\alpha_1 = 1$ and $\alpha_2 = i\pi$:

$$\{1, i\pi, e^1, e^{i\pi}\} = \{1, i\pi, e, -1\}$$

So (assuming Schanuel's Conjecture), $\beta_1 = i\pi$ and $\beta_2 = e$ must be algebraically independent, and therefore π and e must be algebraically independent.

• So what about $e + \pi$ and $e\pi$ or (say) $e^5\pi^3 - e^2\pi^7 + e^2$ Apply Schanuel's Conjecture with $\alpha_1 = 1$ and $\alpha_2 = i\pi$:

$$\{1, i\pi, e^1, e^{i\pi}\} = \{1, i\pi, e, -1\}$$

So (assuming Schanuel's Conjecture), $\beta_1 = i\pi$ and $\beta_2 = e$ must be algebraically independent, and therefore π and e must be algebraically independent.

Thus for any non-zero polynomial P(x, y) with rational (or algebraic) coefficients, we have that $P(e, \pi)$ cannot be zero.

• So what about $e + \pi$ and $e\pi$ or (say) $e^5\pi^3 - e^2\pi^7 + e^2$ Apply Schanuel's Conjecture with $\alpha_1 = 1$ and $\alpha_2 = i\pi$:

$$\{1, i\pi, e^1, e^{i\pi}\} = \{1, i\pi, e, -1\}$$

So (assuming Schanuel's Conjecture), $\beta_1 = i\pi$ and $\beta_2 = e$ must be algebraically independent, and therefore π and e must be algebraically independent.

Thus for any non-zero polynomial P(x, y) with rational (or algebraic) coefficients, we have that $P(e, \pi)$ cannot be zero.

Therefore $e + \pi$, $e\pi$, and $e^5\pi^3 - e^2\pi^7 + e$ must all be irrational (in fact, transcendental).

Lemma (Zero Isolation)

Assuming the p-adic Schanuel Conjecture, given a bi-infinite LRS $\langle u_n \rangle_{n=-\infty}^{\infty}$ one can compute L such that $u_{Ln} \neq 0$ for all $n \neq 0$.

Lemma (Zero Isolation)

Assuming the p-adic Schanuel Conjecture, given a bi-infinite LRS $\langle u_n \rangle_{n=-\infty}^{\infty}$ one can compute L such that $u_{Ln} \neq 0$ for all $n \neq 0$.

• Solve the equation $x^2 - 5 = 0$ in 11-adic integers \mathbb{Z}_{11}

$$\sqrt{5} = 4 + 4 \cdot 11 + 10 \cdot 11^2 + \cdots$$

Lemma (Zero Isolation)

Assuming the p-adic Schanuel Conjecture, given a bi-infinite LRS $\langle u_n \rangle_{n=-\infty}^{\infty}$ one can compute L such that $u_{Ln} \neq 0$ for all $n \neq 0$.

• Solve the equation $x^2 - 5 = 0$ in 11-adic integers \mathbb{Z}_{11}

$$\sqrt{5} = 4 + 4 \cdot 11 + 10 \cdot 11^2 + \cdots$$

Binet formula

$$u_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

makes sense in \mathbb{Z}_{11}

Lemma (Zero Isolation)

Assuming the p-adic Schanuel Conjecture, given a bi-infinite LRS $\langle u_n \rangle_{n=-\infty}^{\infty}$ one can compute L such that $u_{Ln} \neq 0$ for all $n \neq 0$.

• Solve the equation $x^2 - 5 = 0$ in 11-adic integers \mathbb{Z}_{11}

$$\sqrt{5} = 4 + 4 \cdot 11 + 10 \cdot 11^2 + \cdots$$

Binet formula

$$u_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

makes sense in \mathbb{Z}_{11}

• Extend to analytic function $f : \mathbb{Z}_{11} \to \mathbb{Z}_{11}$.

Lemma (Zero Isolation)

Assuming the p-adic Schanuel Conjecture, given a bi-infinite LRS $\langle u_n \rangle_{n=-\infty}^{\infty}$ one can compute L such that $u_{Ln} \neq 0$ for all $n \neq 0$.

• Solve the equation $x^2 - 5 = 0$ in 11-adic integers \mathbb{Z}_{11}

$$\sqrt{5} = 4 + 4 \cdot 11 + 10 \cdot 11^2 + \cdots$$

Binet formula

$$u_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

makes sense in \mathbb{Z}_{11}

- Extend to analytic function $f : \mathbb{Z}_{11} \to \mathbb{Z}_{11}$.
- There is a punctuated disk around zero in which f is non-zero.

There is a decision procedure for the Skolem Problem for simple LRS that terminates subject to the p-adic Schanuel Conjecture and the Skolem Conjecture.

There is a decision procedure for the Skolem Problem for simple LRS that terminates subject to the p-adic Schanuel Conjecture and the Skolem Conjecture.

• Search in parallel for a zero or a "modulo witness" of no zeroes.

There is a decision procedure for the Skolem Problem for simple LRS that terminates subject to the p-adic Schanuel Conjecture and the Skolem Conjecture.

- Search in parallel for a zero or a "modulo witness" of no zeroes.
- If a zero is found, use Zero-Isolation Lemma to split input into subsequences and then recurse

There is a decision procedure for the Skolem Problem for simple LRS that terminates subject to the p-adic Schanuel Conjecture and the Skolem Conjecture.

- Search in parallel for a zero or a "modulo witness" of no zeroes.
- If a zero is found, use Zero-Isolation Lemma to split input into subsequences and then recurse
- Output is a list of zeroes and certificate that there are no more zeroes

Accounts 🔿 Teams

SKOLEM: Solves the Skolem Problem for simple integer LRS

System Explanation Show/Hide

- · On the first line write the coefficients of the recurrence relation, separated by spaces.
- On the second line write an equal number of space-separated initial values.
- · The LRS must be simple, non-degenerate, and not the zero LRS.
- The tool will output all zeros (at both positive and negative indices), along with a completeness
 certificate.

Input area

Auto-fill examples: ShowHide

Input Format

 $a_1 \ a_2 \ \dots \ a_k$

 $u_{\theta} \mid u_1 \mid \ldots \mid u_{k-1}$

where:

 $u_{n+k} \ = \ a_1 \cdot u_{n+k-1} \ + \ a_2 \cdot u_{n+k-2} \ + \ \ldots \ + \ a_k \cdot u_n$

Auto-III examples. Showinde	
Zero LRS Degenerate LRS Non-simple LRS Trivial Fibonacci Tribonacc	zi Berstel sequence [1] Order 5 [3] Order 6 [3] Reversible order 8 [3]
Manual input:	
6 -25 66 -120 150 -89 18 -1	
0 0 -48 -120 0 520 624 -2016	
 Always render full LRS (otherwise restricted to 400 characters) 	
 I solemnly swear the LRS is non-degenerate (skips degeneracy check, 	it will timeout or break if the LRS is degenerate!)
Factor subcases (merges subcases into single linear set, sometimes re	equires higher modulo classes)
Use GCD reduction (reduces initial values by GCD)	
Use fast identification of mod-m (requires GCD reduction) (may result	in non-minimal mod-m argument)
Go Clear Stop	
Output area	
Zeros: 0, 1, 4	
Zero at 0 in (0+ 12) hide/show	LRS: u_{n} =
 p-adic non-zero in (0+ 136ℤ_{≠0}) 	-27161311617120974485866352055894634704015095508906419136363354546754097691 1} +
 Zero at 1 in (1+ 136Z) hide/show 	-50875717942553060846492761332069658239718750163652943951247535707239324495
 p-adic non-zero in (1+ 680Z_{≠0}) ((0+ 5Z_{≠0}) of parent) 	2} +
 Non-zero mod 3 in (137+ 6802) ((1+ 52) of parent) 	-10206640015864118991519942651944720249221599840966743554793056867782008052
 Non-zero mod 3 in (273+ 680ℤ) ((2+ 5ℤ) of parent) 	3} + -14120956624060003103644967151812606672989015750648229312685175908046543759
 Non-zero mod 9 in (409+ 680ℤ) ((3+ 5ℤ) of parent) 	4} +
 Non-zero mod 3 in (545+ 6802) ((4+ 52) of parent) 	190695589477320710360984265894091422375694233909158701965446106943727346702
 Non-zero mod 7 in (2+ 1362) 	5} +