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Overview

Verification of linear systems (Markov chains, linear constraint
loops, probabilistic and quantum automata, affine programs, linear
recurrences, . . . )

1 Halting Problem:

Skolem’s Problem as the Halting Problem for linear loops

2 Termination analysis:
Termination for linear constraint loops

3 Invariant synthesis:
Computing polynomial invariants for affine programs
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Part I: Halting Problem



What is the simplest class of programs for which decid-
ability of the Halting Problem is open?



Halting Problem for Simple Linear Loops!

x := 1;
y := 0;
z := 0;
while x ̸= 0 do

x := 2x + y ;
y := y + 3− z ;
z := −4z + 6;

Skolem Problem:

x := a;
while x1 ̸= 0 do

x := Mx;

Positivity Problem:

x := a;
while x1 ≥ 0 do

x := Mx;
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Classical Formulation

A linear recurrence sequence (LRS) is a sequence
⟨u0, u1, u2, . . .⟩ in Q such that there are constants a1, . . . , ak and,
∀n ≥ 0 : un+k = a1un+k−1 + a2un+k−2 + . . .+ akun.

e.g. the Fibonacci numbers ⟨0, 1, 1, 2, 3, 5, 8, . . .⟩
k is the order of the sequence

Fibonacci has order 2 (un+2 = un+1 + un)

Binet formula: un =
∑s

i=1 Pi (n)λ
n
i

Problem SKOLEM

Instance: An LRS ⟨u0, u1, u2, . . .⟩
Question: Does ∃n ≥ 0 such that un = 0?
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The Positivity Problem

Problem POSITIVITY

Instance: An LRS ⟨u0, u1, u2, . . .⟩
Question: Is un ≥ 0 for all n?

Problem ULTIMATE POSITIVITY

Instance: An LRS ⟨u0, u1, u2, . . .⟩
Question: Is un ≥ 0 for all but finitely many n?



The Positivity Problem

Problem POSITIVITY

Instance: An LRS ⟨u0, u1, u2, . . .⟩
Question: Is un ≥ 0 for all n?

Problem ULTIMATE POSITIVITY

Instance: An LRS ⟨u0, u1, u2, . . .⟩
Question: Is un ≥ 0 for all but finitely many n?



The Positivity Problem

Problem POSITIVITY

Instance: An LRS ⟨u0, u1, u2, . . .⟩
Question: Is un ≥ 0 for all n?

Problem ULTIMATE POSITIVITY

Instance: An LRS ⟨u0, u1, u2, . . .⟩
Question: Is un ≥ 0 for all but finitely many n?



The Skolem Problem is Open

“It is faintly outrageous that this
problem is still open; it is saying that we
do not know how to decide the Halting

Problem even for ‘linear’ automata!”

Terence Tao

“A mathematical embarrassment . . . ”

Richard Lipton
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The Skolem-Mahler-Lech Theorem

Fact: any LRS can be effectively decomposed into finitely many
non-degenerate LRS.

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros {n ∈ N : un = 0} of a non-degenerate LRS
⟨u0, u1, u2, . . .⟩ is finite.

Decidability of the Skolem Problem is equivalent to being able
to compute the finite set of zeros of any given non-degenerate
LRS

Unfortunately, all known proofs of the Skolem-Mahler-Lech
Theorem make use of non-constructive p-adic techniques
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Quiz on Computational Complexity

Given two NFA A and B, is every word accepted by A also
accepted by B?

PSPACE-COMPLETE

Given two NFA A and B, does every word have at least as
many accepting runs in B as in A?

UNDECIDABLE

Given two NFA A and B, for every n, does B accept at least
as many words of length n as A?

POSITIVITY-COMPLETE

Given a Markov chain over states s1, . . . , sk with initial state
s1, is there some timepoint from which the probabiity to be in
state sk is always greater than 1/2?

ULTIMATE POSITIVITY-COMPLETE
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Some Other Application Areas

SKOLEM and POSITIVITY arise in many other areas
(often in hardness results), e.g.:

Theoretical biology
analysis of L-systems
population dynamics

Software verification / program analysis

Dynamical systems

Differential privacy

(Weighted) automata and games

Analysis of stochastic systems

Control theory

Quantum computing

Statistical physics

Formal power series

Combinatorics

. . .
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The Skolem Problem at Low Orders

Skolem Problem

Does ∃n such that un = 0 ?

Let un be a linear recurrence sequence of fixed order

Theorem (folklore)

For orders 1 and 2, Skolem is decidable.

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

For orders 3 and 4, Skolem is decidable.

Critical ingredient is Baker’s theorem for
linear forms in logarithms, which earned
Baker the Fields Medal in 1970.
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Simple Linear Recurrence Sequences

An LRS is simple if its characteristic roots are simple (non-repeated)

e.g., the Fibonacci sequence:

un =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

The “vast majority” of LRS are simple. . .

Simple LRS correspond precisely to diagonalisable matrices
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Counting Rabbits Modulo m

⟨1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .⟩

⟨1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, . . .⟩ (mod 2)

⟨1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, . . .⟩ (mod 3)

⟨1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, . . .⟩ (mod 4)

⟨1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, . . .⟩ (mod 5)
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Reversibility

⟨1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .⟩

The Fibonacci sequence has a zero mod m for every m

The sequence has bi-infinite extension

⟨. . . ,−3, 2,−1, 1, 0,1, 1, 2, 3, 5, 8 . . .⟩

that contains a zero

The bi-infinite extension is periodic modulo m for every m
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Skolem Conjecture

If a simple bi-infinite LRS over the rationals has no zeros,
then it has no zeros modulo some integer m.

Why simple? Consider un = 2n(2n + 1)

One-way version fails to hold
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Skolem Problem for Bi-Infinite Sequences

Problem BI-SKOLEM

Instance: A bi-LRS ⟨. . . , u−2, u−1, u0, u1, u2, . . .⟩ over Q
Question: Does ∃n ∈ Z such that un = 0?

Decidable for simple LRS assuming Skolem’s Conjecture.

How are the Skolem and Bi-Skolem Problems related?

Can one use an oracle for Bi-Skolem to compute all zeros of a
bi-LRS?
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Reducing Skolem to Bi-Skolem

Theorem (Bilu, Luca, Pursar, Ouaknine, Nieuwveld, W. 22)

For LRS of order 5 the Skolem and Bi-Skolem Problems are
interreducible.

For LRS of all orders the Skolem and Bi-Skolem
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Schanuel’s Conjecture

Schanuel’s Conjecture (early 1960s)

Let α1, . . . , αn ∈ C be linearly independent over
Q. Then {α1, . . . , αn, e

α1 , . . . , eαn}, contains (at
least) n numbers that are algebraically
independent over Q.

In other words: for any polynomial P(x1, . . . , xn) with rational
(or algebraic) coefficients, if P(β1, . . . , βn) = 0, then P must be
the zero polynomial.
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Schanuel’s Conjecture — Example

e is transcendental (Charles Hermite, 1873)

π is transcendental (Ferdinand von Lindemann, 1882)

What about e + π and eπ?

Consider

p(x) = (x − e)(x − π)

= x2 − (e + π)x + eπ

If both e + π and eπ were rational, then e and π would be
algebraic, contradiction.
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Schanuel’s Conjecture — Example

So what about e + π and eπ or (say) e5π3 − e2π7 + e?

Apply Schanuel’s Conjecture with α1 = 1 and α2 = iπ:

{1, iπ, e1, e iπ} = {1, iπ, e,−1}

So (assuming Schanuel’s Conjecture), β1 = iπ and β2 = e must be
algebraically independent, and therefore π and e must be
algebraically independent.

Thus for any non-zero polynomial P(x , y) with rational (or
algebraic) coefficients, we have that P(e, π) cannot be zero.

Therefore e + π, eπ, and e5π3 − e2π7 + e must all be irrational (in
fact, transcendental).
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Zero Isolation

Lemma (Zero Isolation)

Assuming the p-adic Schanuel Conjecture, given a bi-infinite LRS
⟨un⟩∞n=−∞ one can compute L such that uLn ̸= 0 for all n ̸= 0.

Solve the equation x2 − 5 = 0 in 11-adic integers Z11

√
5 = 4 + 4 · 11 + 10 · 112 + · · ·

Binet formula

un =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

makes sense in Z11

Extend to analytic function f : Z11 → Z11.

There is a punctuated disk around zero in which f is non-zero.
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Decision Procedure for the Skolem Problem

Theorem (Bilu, Luca, Nieuwveld, Ouaknine, Pursar, W., 22)

There is a decision procedure for the Skolem Problem for simple
LRS that terminates subject to the p-adic Schanuel Conjecture and
the Skolem Conjecture.

Search in parallel for a zero or a “modulo witness” of no
zeroes.

If a zero is found, use Zero-Isolation Lemma to split input into
subsequences and then recurse

Output is a list of zeroes and certificate that there are no
more zeroes
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