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Verification of linear systems (Markov chains, linear constraint
loops, probabilistic and quantum automata, affine programs, linear
recurrences, .. .)

© Halting Problem:

e Skolem’s Problem as the Halting Problem for linear loops

@ Termination analysis:
e Termination for linear constraint loops

© Invariant synthesis:
e Computing polynomial invariants for affine programs



Part I: Halting Problem



i

What is the simplest class of programs for which decid-
ability of the Halting Problem is open?
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y =0;

z:=0;

while x #0 do
X =2x+Yy;
y=y+3—-z
z:= —4z + 6;
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Halting Problem for Simple Linear Loops!

Skolem Problem:

X := a;
x:=1 while x; %0 do J
y =0 x := Mx;
z:=0;
while x #0 do
X =2x+Yy;
z .= —4z+6; while x; > 0 do

y=y+3-z X = a; J

x ;= Mx;




Halting Problem for Simple Linear Loops!

Skolem Problem:

1 X = a;
X o while x; # 0 do
Y= x := Mx;
z:=0;
ziile 2720 el Positivity Problem:
X =2x+Yy;
y=y+3—-z X = a;

z .= —4z+6; while x; > 0 do
x ;= Mx;
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Classical Formulation

A linear recurrence sequence (LRS) is a sequence
(ug, u1, ua,...) in Q such that there are constants aj, ..., ax and,
Vn>0: uUpyk = atUpyk—1+ aUpyk—2+ ...+ akuy.
@ e.g. the Fibonacci numbers (0,1,1,2,3,5,8,...)
@ k is the order of the sequence
o Fibonacci has order 2 (upy2 = Upi1 + Up)
o Binet formula: u, =7 ; Pi(n)A!

Problem SKOLEM

Instance: An LRS (uo, u1, up, .. .)
Question: Does dn > 0 such that u, = 07
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Problem POSITIVITY

Instance: An LRS (uo, u1, up,...)
Question: Is u, > 0 for all n?

Problem ULTIMATE POSITIVITY

Instance: An LRS (uo, ui, up,...)
Question: Is u, > 0 for all but finitely many n?
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The Skolem Problem is Open

“It is faintly outrageous that this
problem is still open; it is saying that we
do not know how to decide the Halting
Problem even for ‘linear’ automata!”

Terence Tao

“A mathematical embarrassment ..."

Richard Lipton
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The Skolem-Mahler-Lech Theorem

Fact: any LRS can be effectively decomposed into finitely many
non-degenerate LRS.

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros {n € N : u, = 0} of a non-degenerate LRS
(uo, u1, up,...) is finite.

@ Decidability of the Skolem Problem is equivalent to being able
to compute the finite set of zeros of any given non-degenerate
LRS

@ Unfortunately, all known proofs of the Skolem-Mahler-Lech
Theorem make use of non-constructive p-adic techniques
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Quiz on Computational Complexity

@ Given two NFA A and B, is every word accepted by A also
accepted by B?
e PSPACE-COMPLETE

@ Given two NFA A and B, does every word have at least as
many accepting runs in B as in A?
o UNDECIDABLE

@ Given two NFA A and B, for every n, does B accept at least
as many words of length n as A?
e POSITIVITY-COMPLETE

@ Given a Markov chain over states sy, ..., s, with initial state
s1, is there some timepoint from which the probabiity to be in
state sy is always greater than 1/27

e ULTIMATE POSITIVITY-COMPLETE
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Some Other Application Areas

SKOLEM and POSITIVITY arise in many other areas
(often in hardness results), e.g.:
@ Theoretical biology

e analysis of L-systems
e population dynamics

Software verification / program analysis
Dynamical systems

Differential privacy

(Weighted) automata and games
Analysis of stochastic systems

Control theory

Quantum computing

Statistical physics

Formal power series

Combinatorics
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The Skolem Problem at Low Orders
Skolem Problem
Does dn such that u, =07

Let u, be a linear recurrence sequence of fixed order

Theorem (folklore)
For orders 1 and 2, Skolem is decidable.

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)
For orders 3 and 4, Skolem is decidable.

Critical ingredient is Baker’'s theorem for
linear forms in logarithms, which earned
Baker the Fields Medal in 1970.
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Simple Linear Recurrence Sequences

An LRS is simple if its characteristic roots are simple (non-repeated)

@ e.g., the Fibonacci sequence:

_ 1 (1vE) 1 (1B
=m0 NAUE

@ The “vast majority” of LRS are simple...

Simple LRS correspond precisely to diagonalisable matrices
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C
o @t w G

COAC

1,1,2,3,5,8,13,21,34,55,89,144, .. )

1,1,0,1,1,0,1,1,0,1,1,0,...) (mod 2)

(
(
(1,1,2,0,2,2,1,0,1,1,2,0,...) (mod 3)
(1,1,2,3,1,0,1,1,2,3,1,0,...) (mod 4)
(

1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,...) (mod 5)
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Reversibility

s
@ @ @& @

CO R

(1,1,2,3,5,8,13,21,34,55,89, 144, .. )

@ The Fibonacci sequence has a zero mod m for every m

@ The sequence has bi-infinite extension
(...,—3,2,-1,1,0,1,1,2,3,5,8...)

that contains a zero

@ The bi-infinite extension is periodic modulo m for every m
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Skolem Conjecture

ANWENDUNG EXPONENTIELLER KONGRUENZEN

ZUM BEWEIS DER UNLOSBARKEIT GEWISSER
DIOPHANTISCHER GLEICHUNGEN

VON

TH. SKOLEM

o If a simple bi-infinite LRS over the rationals has no zeros,
then it has no zeros modulo some integer m.

e Why simple? Consider u, =2"(2n+ 1)

@ One-way version fails to hold
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Skolem Problem for Bi-Infinite Sequences

Problem BI-SKOLEM

Instance: A bi-LRS (... u_p,u_1,up, us, us,...) over Q
Question: Does dn € Z such that u, = 07

@ Decidable for simple LRS assuming Skolem’s Conjecture.
@ How are the Skolem and Bi-Skolem Problems related?

@ Can one use an oracle for Bi-Skolem to compute all zeros of a
bi-LRS?
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Reducing Skolem to Bi-Skolem

Theorem (Bilu, Luca, Pursar, Ouaknine, Nieuwveld, W. 22)

For LRS of order 5 the Skolem and Bi-Skolem Problems are
interreducible. For LRS of all orders the Skolem and Bi-Skolem
problems are irreducible assuming the p-adic Schanuel conjecture.

Lemma (Zero Isolation)

Assuming the p-adic Schanuel Conjecture, given a bi-infinite LRS
(un)S° _ . one can compute L such that ug, # 0 for all n # 0.
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Schanuel’s Conjecture (early 1960s)

Let a1,...,a, € C be linearly independent over
Q. Then {a1,...,an,e*, ..., e*}, contains (at
least) n numbers that are algebraically
independent over Q.

In other words: for any polynomial P(xi,...,x,) with rational
(or algebraic) coefficients, if P(f31,...,08,) =0, then P must be
the zero polynomial.
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Schanuel’s Conjecture — Example

e e is transcendental (Charles Hermite, 1873)
e 7 is transcendental (Ferdinand von Lindemann, 1882)
@ What about e + 7 and en?

Consider

p(x) = (x - )(x — )

= x>~ (e+7m)x+en

If both e + 7 and ew were rational, then e and 7 would be
algebraic, contradiction.
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Schanuel’s Conjecture — Example

e So what about e + 7 and er or (say) 73 — €27’ + e?

Apply Schanuel's Conjecture with a; = 1 and ap = i
{1,im, el ™ = {1,im, e, —1}

So (assuming Schanuel’s Conjecture), 51 = im and 82 = e must be
algebraically independent, and therefore w and e must be
algebraically independent.

Thus for any non-zero polynomial P(x,y) with rational (or
algebraic) coefficients, we have that P(e, ) cannot be zero.

3 _

Therefore e + 7, emr, and €73 — €277 + e must all be irrational (in

fact, transcendental).
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Zero Isolation

Lemma (Zero Isolation)

Assuming the p-adic Schanuel Conjecture, given a bi-infinite LRS

(un)S_ . one can compute L such that ug, # 0 for all n # 0.

@ Solve the equation x2 — 5 = 0 in 11-adic integers Z11

VB=4+4.114+10-112+ ...

@ Binet formula

_L (1B 1 (145
=m0 NAUE:

makes sense in Zq1

@ Extend to analytic function f : Z11 — Z11.

@ There is a punctuated disk around zero in which f is non-zero.




Decision Procedure for the Skolem Problem

Theorem (Bilu, Luca, Nieuwveld, Ouaknine, Pursar, W., 22)

There is a decision procedure for the Skolem Problem for simple

LRS that terminates subject to the p-adic Schanuel Conjecture and
the Skolem Conjecture.



Decision Procedure for the Skolem Problem

Theorem (Bilu, Luca, Nieuwveld, Ouaknine, Pursar, W., 22)

There is a decision procedure for the Skolem Problem for simple

LRS that terminates subject to the p-adic Schanuel Conjecture and
the Skolem Conjecture.

@ Search in parallel for a zero or a “modulo witness” of no
zeroes.



Decision Procedure for the Skolem Problem

Theorem (Bilu, Luca, Nieuwveld, Ouaknine, Pursar, W., 22)

There is a decision procedure for the Skolem Problem for simple
LRS that terminates subject to the p-adic Schanuel Conjecture and
the Skolem Conjecture.

@ Search in parallel for a zero or a “modulo witness” of no
zeroes.

o If a zero is found, use Zero-Isolation Lemma to split input into
subsequences and then recurse



Decision Procedure for the Skolem Problem

Theorem (Bilu, Luca, Nieuwveld, Ouaknine, Pursar, W., 22)

There is a decision procedure for the Skolem Problem for simple
LRS that terminates subject to the p-adic Schanuel Conjecture and
the Skolem Conjecture.

@ Search in parallel for a zero or a “modulo witness” of no
zeroes.

o If a zero is found, use Zero-Isolation Lemma to split input into
subsequences and then recurse

@ Output is a list of zeroes and certificate that there are no
more zeroes



@ skolem.mpi-sws.org

Accounts @ Teams

System Explanation [[showide Input Format

« On the first line write the coefficients of the recurrence relation, separated by spaces. 2182 «ee A
+ On the second line write an equal number of space-separated initial values.

« The LRS must be simple, non-degenerate, and not the zero LRS.

Up Uy e Uy

« The tool will output all zeros (at both positive and negative indices), along with a completeness where:
. Unok = 81 Unoket + 82 Unakcz + +en + AU
certificate.
Input area

P )

Manual input:

6 -25 66 -120 150 -89 18 -1
00 -48 -120 0 520 624 -2016

@ Always render full LRS (otherwise restricted to 400 characters)

© I solemnly swear the LRS is non-degenerate (skips degeneracy check, it will timeout or break if the LRS is degenerate!)
© . Factor subcases (merges subcases into single linear set, sometimes requires higher modulo classes)

©  Use GCD reduction (reduces initial values by GCD)

© Use fast identification of mod-m (requires GCD reduction) (may result in non-minimal mod-m argument)

Output area
Zeros: 0,1, 4
Zeroat 0in (0+ 12) | LRS: u_{n
) 2716131161
© p-adic non-zero in (0+ 136Zo) 13+
* zeroat1in 1+ 1362, [ -5087571
« p-adic non-zero in (1+ 680Z.) ((0+ 5Z.) of parent) 2
» Non-zero mod 3 in (137+ 680) ((1+ 52) of parent) 3+

* Non-zero mod 3 in (273+ 6802) ((2+ 52) of parent)

. ay +

= Non-zero mod 3 in (545+ 680Z) ((4+ 52) of parent)
© Non-zero mod 7 i (2+ 1362) 5+



