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th e ProG raM t erMInatI o n  problem, also known 
as the uniform halting problem, can be defined as 
follows:

Using only a finite amount of time, determine  
whether a given program will always finish running  

or could execute forever.
This problem rose to prominence before the 

invention of the modern computer, in the era of 
Hilbert’s Entscheidungsproblem:a the challenge to 
formalize all of mathematics and use algorithmic 
means to determine the validity of all statements.  
In hopes of either solving Hilbert’s challenge, or 
showing it impossible, logicians began to search 
for possible instances of undecidable problems. 
Turing’s proof38 of termination’s undecidability is 
the most famous of those findings.b

The termination problem is structured as an infinite 

a In English: “decision problem.”
b There is a minor controversy as to whether or not Turing proved the undecidability in38. Technically 

he did not, but termination’s undecidability is an easy consequence of the result that is proved. A 
simple proof can be found in Strachey.36

set of queries: to solve the problem 
we would need to invent a method ca-
pable of accurately answering either 
“terminates” or “doesn’t terminate” 
when given any program drawn from 
this set. Turing’s result tells us that 
any tool that attempts to solve this 
problem will fail to return a correct 
answer on at least one of the inputs. 
No number of extra processors nor 
terabytes of storage nor new sophisti-
cated algorithms will lead to the devel-
opment of a true oracle for program 
termination.

Unfortunately, many have drawn 
too strong of a conclusion about the 
prospects of automatic program ter-
mination proving and falsely believe 
we are always unable to prove termi-
nation, rather than more benign con-
sequence that we are unable to always 
prove termination. Phrases like “but 
that’s like the termination problem” 
are often used to end discussions that 
might otherwise have led to viable par-
tial solutions for real but undecidable 
problems. While we cannot ignore 
termination’s undecidability, if we 
develop a slightly modified problem 
statement we can build useful tools. 
In our new problem statement we will 
still require that a termination prov-
ing tool always return answers that 
are correct, but we will not necessarily 
require an answer. If the termination 
prover cannot prove or disprove termi-
nation, it should return “unknown.”

Using only a finite amount of time, 
determine whether a given program 
will always finish running or could 
execute forever, or return the answer  
“unknown.”

Proving 
Program 
termination

DoI:10.1145/1941487.1941509

In contrast to popular belief, proving 
termination is not always impossible.

BY BYRon CooK, anDReas PoDeLsKI,  
anD anDReY RYBaLChenKo

 key insights
    for decades, the same method was used 

for proving termination. It has never been 
applied successfully to large programs.

    a deep theorem in mathematical logic, 
based on Ramsey’s theorem, holds the 
key to a new method.

    the new method can scale to large 
programs because it allows for the 
modular construction of termination 
arguments. 

[...] termination tools can automatically prove or disprove
termination of many famous complex examples such as
Ackermann’s function or McCarthy’s 91 function as well
as moderately sized industrial examples
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A Complete Method for the Synthesis of Linear
Ranking Functions

Andreas Podelski and Andrey Rybalchenko
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Saarbrücken, Germany

Abstract. We present an automated method for proving the termina-
tion of an unnested program loop by synthesizing linear ranking func-
tions. The method is complete. Namely, if a linear ranking function exists
then it will be discovered by our method. The method relies on the fact
that we can obtain the linear ranking functions of the program loop as
the solutions of a system of linear inequalities that we derive from the
program loop. The method is used as a subroutine in a method for prov-
ing termination and other liveness properties of more general programs
via transition invariants; see [PR03].

1 Introduction

The verification of termination and other liveness properties of programs is a
difficult problem. It requires the discovery of invariants and ranking functions
to prove the termination of program loops.

We present a complete and efficient method for the synthesis of linear ranking
functions for unnested program loops whose guards and update statements use
linear arithmetic expressions. We have implemented the method. Preliminary
experiments show that the method is efficient not only in theory but also in
practice.

Roughly, the method works as follows. Given a program loop for which we
want to find a linear ranking function, we construct a corresponding system
of linear inequalities over rationals. As we show, the solutions of this system
encode the linear ranking functions of the program loop. That is, we can check
the existence of a linear ranking function by constraint solving. If it exists, a
linear ranking function can be constructed from a solution of the system of
linear inequalities, a solution that we obtain by constraint solving. If the system
has no solutions then (and only then) a linear ranking function does not exist.
As a consequence of our approach, one can use existing highly-optimized tools
for linear programming as the engine in a complete method (to our knowledge
the first) for the synthesis of linear ranking functions.

We admit unnested program loops with nondeterministic update statements.
This is potentially useful to model read statements. It is strictly required in the
context where we employ our method, described next.

In a work described elsewhere [PR03], we show that one can reduce the
test of termination and other liveness properties (in the presence of fairness

B. Steffen and G. Levi (Eds.): VMCAI 2004, LNCS 2937, pp. 239–251, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

“We present an automated method for proving the termi-
nation of an unnested loop by synthesizing linear ranking
functions. The method is used as a subroutine for proving
termination of more general programs [. . . ] ”



Linear Constraint Loops - A Useful Abstraction

Complete method for synthesising linear and lexicographic-linear
ranking functions for linear constraint loops.

while (Bx ≥ b) do A

(
x
x ′

)
≤ c
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Termination Detection in Logic Programs using Argument Sizes�

(Extended Abstract)

Kirack Sohn and Allen Van Gelder

University of California, Santa Cruz

Abstract

Progress on automated termination detection for logic

programs is reported. The prospects for handling

a large class of programs completely automatically

appear promising, in contrast to the bleak picture

for procedural languages. The methods reported are

based on term size analysis of procedure arguments.

Argument sizes of derivable facts involving an n-ary

predicate are viewed as points in the positive orthant

of Rn. We describe a method of �nding a nonnegative

linear combination of bound argument sizes that (if it

is found) is guaranteed to decrease during top-down

execution of recursive rules. Duality theory of linear

programming is used.

This methodology can handle nonlinear recursion,

mutual recursion, and cases in which no speci�c argu-

ment is certain to decrease; while it requires rules to

have a certain form, this form is attainable by known

syntactic transformations. Several programs that could

not be shown to terminate by earlier published methods

are handled successfully. However, it only analyzes a

su�cient condition; a procedure may terminate without

our methodology detecting that fact.

�Work partially supported by NSF grants CCR-89-58590 and

IRI-89-02287

1 Introduction

Logic programming languages o�er an attractive tool to

integrate procedural requirements with database access;

indeed, subgoals in the logical rules have the same mean-

ing whether they refer to database (EDB) relations, or

computed (IDB) relations. The setof meta-predicate

provides one link, with its ability to convert a relational

representation into a speci�c data structure, such as a

list, for more e�cient manipulation. Processing of the

internal data structure is normally accomplished with

recursive rules, and they are normally most e�ciently

executed top-down. There are large bodies of software

that are compiled to execute top-down and achieve

satisfactory performance; however, we are aware of

no corresponding claim for bottom-up compilation of

recursion on structure. Top-down execution will remain

an important tool for programming over databases due

to its signi�cantly lower constant factor.

The question of whether a set of logic program rules,

when executed in a top-down, left-to-right fashion (the

Prolog algorithm), is sure to terminate has received

considerable study. Of particular interest is the

development of an automated method for detecting such

termination guarantees for a sizable class of practical

logic programs. Essentially, all developed methods

seek to identify some function of the bound predicate

arguments that is sure to decrease during recursive

goal reduction [Nai83, SU84, UVG88, Wal88, APP+89,

Pl�u90, BS89a, BS89b, BS91].

As mentioned in earlier work [VG90], in a deductive

database environment, proving termination is not just

an academic issue. There exist two approaches to rule

evaluation: top-down and bottom-up. Typically, one

converges naturally and the other does not on a given set

of interdependent rules. Capture rules were introduced

by Ullman [Ull85] as a way to plan the evaluation

1

“The prospects for automatic termination detection of
logic programs appear promising, in constrast to the bleak
picture for procedural languages. We describe a method
of finding a non-negative linear combination of bound ar-
guments that decreases during top-down execution of the
recursive rules.“
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The classical technique for proving termination of a generic sequential computer program
involves the synthesis of a ranking function for each loop of the program. Linear ranking
functions are particularly interesting because many terminating loops admit one and
algorithms exist to automatically synthesize it. In this paper we present two such
algorithms: one based on work dated 1991 by Sohn and Van Gelder; the other, due
to Podelski and Rybalchenko, dated 2004. Remarkably, while the two algorithms will
synthesize a linear ranking function under exactly the same set of conditions, the former
is mostly unknown to the community of termination analysis and its general applicability
has never been put forward before the present paper. In this paper we thoroughly justify
both algorithms, we prove their correctness, we compare their worst-case complexity and
experimentally evaluate their efficiency, and we present an open-source implementation of
them that will make it very easy to include termination-analysis capabilities in automatic
program verifiers.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Termination analysis of computer programs (a term that here we interpret in its broadest sense) consists in attempting
to determine whether execution of a given program will definitely terminate for a class of its possible inputs. The ability to
anticipate the termination behavior of programs (or fragments thereof) is essential to turn assertions of partial correctness
(if the program reaches a certain control point, then its state satisfies some requirements) into assertions of total correctness
(the program will reach that point and its state will satisfy those requirements). It is worth observing that the property of
termination of a program fragment is not less important than, say, properties concerning the absence of run-time errors. For
instance, critical reactive systems (such as fly-by-wire avionics systems) must maintain a continuous interaction with the
environment: failure to terminate of some program components can stop the interaction the same way as if an unexpected,
unrecoverable run-time error occurred.

Developing termination proofs by hand is, as any other program verification task, tedious, error-prone and, to keep it
short, virtually impossible to conduct reliably on programs longer than a few dozens of lines. For this reason, automated
termination analysis has been a hot research topic for more than two decades. Of course, due to well-known limitative

✩ This work has been partly supported by PRIN project “AIDA – Abstract Interpretation: Design and Applications” and by the Faculty of Sciences of the
University of Parma.

* Corresponding author at: Dipartimento di Matematica, Università di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy.
E-mail addresses: bagnara@cs.unipr.it (R. Bagnara), Frederic.Mesnard@univ-reunion.fr (F. Mesnard), andrea.pescetti@unipr.it (A. Pescetti),

zaffanella@cs.unipr.it (E. Zaffanella).
1 http://bugseng.com.

0890-5401/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ic.2012.03.003

“In this paper we present two algorithms, one based on
work by Sohn and Van Gelder; the other, due to Podelski
and Rybalchenko. [We show that] the two algorithms
synthesize a linear ranking function under exactly the
same set of conditions.”



Linear Constraint Loops - Decidability

while (Bx ≥ b) do A

(
x
x ′

)
≤ c

“We feel that themost intriguing problem is whether the
termination of a single linear constraint loop is decidable,
when the variables range over the integers.”

Ben-Amram, Genaim, and Masud,
On the Termination of Integer Linear Loops

ACM Trans. Program. Lang. Syst., 2012
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Polya’s Advice

“If there’s a hard problem you can’t solve, there’s an easier
problem you can solve: find it!”



Deterministic Linear Loops

while Ax ≥ b do
x := B · x+ c

Termination Problem (R)

Instance: ⟨ A, B, b, c ⟩
Question: Does the loop terminate for all initial values in R?

Theorem (Tiwari 04)

Termination over R is decidable.

Theorem (Braverman 08)

Termination over Q is decidable.
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Termination Depends on the Numerical Domain

Loop that is terminating over Q but not R:

while 4x + y > 0

do

(
x
y

)
←

(
−2 4
4 0

)(
x
y

)

x

y

(
√
17− 1, 4)

(1 +
√
17,−4)
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Termination of Deterministic Linear Loops over Z

“ It appears that to decide termination over Z it is nec-
essary to be able to tell, given a point x0, whether the
program terminates on x0 or not.”

Termination of Integer Linear Programs
M. Braverman, CAV, 2008

x := x0

while Ax ≥ b do
x := B · x+ c

Halting Problem

Instance: ⟨ A, B, b, c, x0 ⟩
Question: Does the loop halt when started on x0?
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Linear Recurrence Sequences

The sequence of values assumed by a variable in a deterministic
linear loop is a linear recurrence sequence: ⟨un⟩n≥0:

un = a1un−1 + · · ·+ akun−k (n ≥ k)
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Matrix Formulation of Linear Recurrence Sequences

Given M, v, w, let un = vTMnw

Then un is an LRS:

Mk = a0I + a1M+ . . .+ ak−1M
k−1

Mn+k = a0Mn + a1Mn+1 + . . .+ ak−1M
n+k−1

vTMn+kw = a0vTMnw + a1vTMn+1w + . . .+ ak−1v
TMn+k−1w

un+k = a0un + a1un+1 + . . .+ ak−1un+k−1

Conversely, if un satisfies the above recurrence then

un =
(
0 · · · 1

)

ak−1 ak−2 · · · a0
1

1
. . .


n 

uk−1
...
u1
u0
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The Positivity Problem

Problem POSITIVITY

Instance: An LRS ⟨u0, u1, u2, . . .⟩
Question: Is un ≥ 0 for all n?

Problem ULTIMATE POSITIVITY

Instance: An LRS ⟨u0, u1, u2, . . .⟩
Question: Is un ≥ 0 for all but finitely many n?
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The Many Faces of the Positivity Problem

Positivity of Rational Series

Instance: Rational Series f (x) =
P(x)

Q(x)
=

∞∑
n=0

anx
n

Question: Are all coffecients of f postive ?

Threshold Problem for Markov Chains

Instance: Markov chain M, distinguished state s, and threshold λ.
Question: Is the probability of being in state s at least λ at all
times ?
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The Many Faces of the Positivity Problem

Is the probability of being in initial state > 0.455 at all times ?

(1, 0, 0)
(0.5, 0.25, 0.25)
(0.458, 0.25, 0.292)
(0.458, 0.261, 0.281)
(0.457, 0.255, 0.288)
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Closed Forms for Numerical Loops∗

ZACHARY KINCAID, Princeton University, USA
JASON BRECK, University of Wisconsin, USA
JOHN CYPHERT, University of Wisconsin, USA
THOMAS REPS, University of Wisconsin, USA and GrammaTech, Inc., USA

This paper investigates the problem of reasoning about non-linear behavior of simple numerical loops. Our
approach builds on classical techniques for analyzing the behavior of linear dynamical systems. It is well-known
that a closed-form representation of the behavior of a linear dynamical system can always be expressed using
algebraic numbers, but this approach can create formulas that present an obstacle for automated-reasoning
tools. This paper characterizes when linear loops have closed forms in simpler theories that are more amenable
to automated reasoning. The algorithms for computing closed forms described in the paper avoid the use of
algebraic numbers, and produce closed forms expressed using polynomials and exponentials over rational
numbers. We show that the logic for expressing closed forms is decidable, yielding decision procedures for
verifying safety and termination of a class of numerical loops over rational numbers. We also show that the
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“It is well-known that a closed-form representation of
the behavior of a linear dynamical system can always be
expressed using algebraic numbers, but this approach can
create formulas that present an obstacle for automated-
reasoning tools.”
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With the closed form in hand, can automated tools and decision
procedures help decide positivity?
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Deciding Positivity - Case Study

Determine positivity of LRS

un := 33
8 + λn

1 + λn
1 + 2λn

2 + 2λn
2 ,

where λ1 =
−3+4i

5 and λ2 =
−7+24i

25

Question

What useful special properties does this closed form have?

Lemma

If ⟨un⟩∞n=0 is a simple LRS all of whose characteristic roots have
the same absolute value then we can decide positivity.
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Taking the Closure

Define f : T2 → R by

f (z1, z2) =
33
8 + z1 + z1 + 2z2 + 2z2 .

Then un = f (λn
1, λ

n
2).

Orbit determined by multiplicative relations between λ1 and λ2:

Cl{(λn
1, λ

n
2) : n ∈ N} = {(z1, z2) ∈ T2 : z21 z2 = 1}︸ ︷︷ ︸

S
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Case Analysis

What if min(z1,z2)∈S f (z1, z2) ≥ 0 ?

What if min(z1,z2)∈S f (z1, z2) < 0 ?

In the case at hand, min(z1,z2)∈S f (z1, z2) = 0 and we conclude
that ⟨un⟩∞n=0 is positive.

Question

Which decision procedures did we use for case distinction ?

Question

Is vn := un − 1
2n+100 positive ?
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Lower Bounds on Sums of Powers

How small can the following expression get?

|3x − 7y |

where x , y ∈ N

Given ε > 0, for all but finitely many x and y ,

|3x − 7y | > M1−ε

where M = max{3x , 7y}

Effective bounds from Baker’s Theorem
(1966) on linear forms in logarithms



Lower Bounds on Sums of Powers

How small can the following expression get?

|3x − 7y |

where x , y ∈ N

Given ε > 0, for all but finitely many x and y ,

|3x − 7y | > M1−ε

where M = max{3x , 7y}

Effective bounds from Baker’s Theorem
(1966) on linear forms in logarithms



Lower Bounds on Sums of Powers

How small can the following expression get?

|3x − 7y |

where x , y ∈ N

Given ε > 0, for all but finitely many x and y ,

|3x − 7y | > M1−ε

where M = max{3x , 7y}

Effective bounds from Baker’s Theorem
(1966) on linear forms in logarithms



Lower Bounds on Sums of Powers

How about
| 3x ± 7y ± 13z |

where x , y , z ∈ N

Given ε > 0, for all but finitely many x , y and z ,

| 3x ± 7y ± 13z | > M1−ε

where M = max{3x , 7y , 13z}

Non-effective bounds from the Subspace
Theorem — a higher-dimensional
generalisation of Roth’s Theorem (1955) on
Diophantine Approximation.
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Results

Theorem (Ouaknine, W. 2014)

1 The Positivity Problem is decidable for LRS of order at most
5, and for simple LRS of order at most 9.

2 The Ultimate Positvity Problem is decidable for simple LRS
(of arbitrary order). The complexity is in PSPACE and
∀R-hard.

Corollary

The Halting Problem is decidable for deterministic linear loops
with at most 4 variables and for loops with at most 8 variables if
the update matrix is diagonalisable.
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Back to Termination Over Z

Define NT := {x0 ∈ Rn : x0 non-terminating}

x := x0

while Ax ≥ b do
x := B · x+ c

Proposition

There exists an closed convex semi-algebraic loop invariant C s.t.

int(C ) ⊆ NT ⊆ C

NT contains an integer point iff C contains an integer point.

Construction of C is based on our analysis of positivity problem.

Question

Is it decidable whether a semi-algebraic set contains an integer
point?
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Flatness Theorem

Given convex C ⊆ Rd , define

width(C ) := inf
v∈Zd\{0}

sup
x ,y∈C

v⊤(x − y) .

Lemma (Flatness Theorem)

If C is semi-algebraic and full dimensional then there exists W > 0
(depending on description of C ) such that if width(C ) > W then
C contains an integer point.

L

How does the lattice width
vary as a function of L?
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Hilbert’s Tenth Problem for Convex Sets

Theorem (Khachiyan, Porkolab’97)

It is decidable whether a given semi-algebraic set C ⊆ Rn contains
an integer point.

Assume C does not have an integer point:

If C is not full dimensional, eliminiate a variable

If C is not “fat”, eliminate a variable
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Linear Loop Termination

Theorem (Hosseini, Ouaknine, W. 2019)

Termination of deterministic linear loops over Z is decidable.

Decidability of termination for general constraint loops
remains open!

while (Bx ≥ b) do A

(
x
x ′

)
≤ c

Halting (i.e., the Positivity Problem for LRS) remains beyond
reach, even in deterministic case.
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