
Part III: Loop Invariants



Programming in the Jurassic Era

Robert W. Floyd, Assigning Meanings to Programs, 1967
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Invariant Synthesis

I
S

BAD!

The classical approach to the verification of temporal
safety properties of programs requires the construction of
inductive invariants [...]. Automation of this construc-
tion is the main challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007



Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Polynomial invariant: x − 9x2 − y + 24xy − 16y2 = 0
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Automata-Theoretic Application of Polynomial Invariants
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Abstract. We study the following decision problem: is the language recognized by a quantum
finite automaton empty or nonempty? We prove that this problem is decidable or undecidable
depending on whether recognition is defined by strict or nonstrict thresholds. This result is in
contrast with the corresponding situation for probabilistic finite automata, for which it is known
that strict and nonstrict thresholds both lead to undecidable problems.
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1. Introduction. In this paper, we provide decidability and undecidability
proofs for two problems associated with quantum finite automata. Quantum finite
automata (QFA) were introduced by Moore and Crutchfield [MC00]; they are to quan-
tum computers what finite automata are to Turing machines. Quantum automata are
also analogous to the probabilistic finite automata introduced in the 1960s by Rabin
that accept words with a certain probability (see [Rab63], [Rab67]; see also [Paz71] for
a book-length treatment). A quantum automaton A assigns real values ValA(w) to
input words w (see below for a precise description of how these values are computed).
ValA(w) can be interpreted as the probability that on any given run of A on the input
word w, w is accepted by A. Nonisolated cut-point recognition will be considered in
this article: we do not ask for a gap between the set of ValA(w) for accepted words
w and the set of ValA(w) for rejected words w. Associated to a real threshold λ, the
languages recognized by the automaton A with nonstrict and strict threshold λ are

L≥ = {w : ValA(w) ≥ λ} and L> = {w : ValA(w) > λ}.

Many properties of these languages are known in the case of probabilistic and quantum
automata. For instance, it is known that the class of languages recognized by quantum
automata is strictly contained in the class of languages recognized by probabilistic
finite automata [BP02]. For probabilistic automata it is also known that the problem
of determining if L≥ is empty and the problem of determining if L> is empty are
undecidable (see [Paz71, Thm. 6.17, p. 90]). This is true even for automata of fixed
dimensions [BC03]. Decidability problems on QFA were first studied in the paper
by Amano and Iwama [AI99]: is the language recognized by a 1.5-way quantum
automaton empty? The undecidability of this problem was proven, even in the case
of isolated cut-point.
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Theorem (Blondel, Jeandel, Koiran, Portier 2005)

The strict threshold problem is decidable for quantum automata.



From Flowcharts to Affine Programs

Affine programs (Muller-Olm and Seidl 2004)
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Nondeterministic branching (no guards)

Integer variables with affine assignments

Compute all valid polynomial relations at each location

Represents the Zariski closure of the reachable set at each
location
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Geometric Picture

x , y , z range over Z (or Q)
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Computing Strongest Polynomial Invariants
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Invariants are inductive because affine functions are continuous
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Generating Inductive Invariants

Choose the right abstract domain

Some domains always have ‘best’ (strongest, smallest)
invariants, others not

Compute an invariant!

Many eclectic methods: fixed-point computations, constraint
solving, interpolation, abduction, machine learning, . . .
Some approaches require ’widening’ to ensure termination
Other techniques invoke e.g. dimension or algebraic arguments
Trade-off between precision and tractability . . .
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Affine Invariants for Affine Programs

Theorem (Karr 76)

There is an algorithm that computes, for any given affine program
over Q, its strongest affine inductive invariant.



Polynomial Invariants for Affine Programs

Theorem (ICALP 2004)

There is an algorithm that computes, for any given affine program
over Q, all its polynomial invariants up to any fixed degree d.



Finding all polynomial invariants

“It is a challenging problem whether or not the set of all
valid polynomial relations can be computed, not just the
ones of some given form”
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Strongest Polynomial Invariants @ LICS 2018

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes, for any given affine
program over Q, its strongest polynomial inductive invariant.

Algorithm computes for each location the set of all
polynomial relations among program variables that hold
whenever control reaches that location

We represent this set of relations using a finite basis of
polynomial equalities

Dually, the algorithm computes for each location the smallest
algebraic set containing the set of reachable states:

algebraic sets are defined by conjunctions of polynomial
equalities

Smallest algebraic set = Zariski closure
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Zariski Closure of Linear Semigroups

M1, . . . ,Mk ∈ Qd×d

Linear semigroup ⟨M1, . . . ,Mk⟩ ⊆ Qd×d

Zariski closure ⟨M1, . . . ,Mk⟩ ⊆ Rd×d
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Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes ⟨M1, . . . ,Mk⟩.

Outputs a finite list of polynomials p1, . . . , pm ∈ Z[x1, . . . , xd2 ]
such that:

⟨M1, . . . ,Mk⟩ = V(p1, . . . , pm)
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⟨M1, . . . ,Mk⟩ is finite

⇐⇒

⟨M1, . . . ,Mk⟩ is finite!



Some Hard Problems for Linear Semigroups

Theorem (Markov 1947)

There is a fixed set of 6× 6 integer matrices
M1, . . . ,Mk such that the membership problem
“M ∈ ⟨M1, . . . ,Mk⟩?” is undecidable.

Mortality: Is the zero matrix contained in the semigroup
generated by a given set of n × n matrices with integer entries?

Theorem (Paterson 1970)

The mortality problem is undecidable for
3× 3 matrices.
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The Group Case



Some Ingredients

Theorem (Schur 1911)

Every finitely generated periodic subgroup of
GLn(C) is finite.

Theorem (Masser 1988)

Given algebraic numbers λ1, . . . , λk , there is a
procedure to compute the set of
multiplicative relations{

(n1, . . . , nk) ∈ Zk : λn1
1 · · ·λnk

k = 1
}
.
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Multiplicative Relations

Write A =

(
2 1 0
0 2 0
0 0 −4

)
:

{An : n ∈ Z} = {An : n ∈ N}

=

{(
2n n2n−1 0
0 2n 0
0 0 (−4)n

)
: n ∈ N

}

=

{(
x y 0

0 x 0

0 0 x2

)
,

(
x y 0

0 x 0

0 0 −x2

)
: x , y ∈ R, x ̸= 0

}

Zariski closure is determined by multiplicative relationships
among eigenvalues.
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Categorical Structure in Linear Semigroups

Given algebraic semigroup S ⊆ Mn(Q) and r ∈ N, define

S r := {A ∈ S : rank(A) = r} .

Not a semigroup in general, but consider S r as a category:

(U,V ) (U ′,V ′)

(U ′′,V ′′)

A

A′

Object (U,V ) s.t. U,V ⊆ Cn

U ∩ V = 0

dim(U) = n − r , dim(V ) = r

Arrow (U,V ) → (U ′,V ′):

A ∈ S r s.t. ker(A) = U,

Im(A) = V ′
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Properties of Cr

Each non-trivial SCC is a groupoid.

The number of non-trivial SCCs is at most
(n
r

)
.

Roughly Speaking . . .

We generalise the algorithm of Derksen, Jeandel, and Koiran from
finitely generated groups to groupoids with algebraic sets of
generators.
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Polynomial Invariants for Affine Programs, LICS 2018

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

Given a finite set of rational square matrices of the same
dimension, we can compute the Zariski closure of the semigroup
that they generate.

Corollary

Given an affine program, we can compute for each location the
ideal of all polynomial relations that hold at that location.



From Affine Programs to Polynomial Programs

21

Equivalence of Deterministic Top-Down Tree-to-String
Transducers Is Decidable

HELMUT SEIDL, Technical University of Munich
SEBASTIAN MANETH, Universität of Bremen
GREGOR KEMPER, Technical University of Munich

We prove that equivalence of deterministic top-down tree-to-string transducers is decidable, thus solving a
long-standing open problem in formal language theory. We also present efficient algorithms for subclasses:
for linear transducers or total transducers with unary output alphabet (over a given top-down regular domain
language), as well as for transducers with the single-use restriction. These results are obtained using tech-
niques from multi-linear algebra. For our main result, we introduce polynomial transducers and prove that
for these, validity of a polynomial invariant can be certified by means of an inductive invariant of polynomial
ideals. This allows us to construct two semi-algorithms, one searching for a certificate of the invariant and
one searching for a witness of its violation. Via a translation into polynomial transducers, we thus obtain
that equivalence of general ydt transducers is decidable. In fact, our translation also shows that equivalence
is decidable when the output is not in a free monoid but in a free group.
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“ [. . . ] we introduce polynomial transducers and prove
that for these, equivalence can be certified by means of an
inductive polynomial invariant. This allows us to construct
two semi-algorithms, one searching for an invariant and the
other for a witness of non-equivalence [. . . ]”



Undecidability for Polynomial Programs

Theorem (Dufourd, Finkel, Schnoebelen 1998)

The boundedness problem for reset vector addition systems is
undecidable.

Theorem (Hrushovski, Ouaknine, Pouly, W. 23)

There is no algorithm that computes the Zariski closure of the
reachable set of a polynomial program.

Simulate reset VAS by polynomial program:

Represent VAS configuration (a1, . . . , ad) “projectively” by
configuration (z , a1z , . . . , adz), z ̸= 0: of polynmial program

dec(1) : (z , a1, . . . , ad) := (za1, (a1 − z)a1, a2a1, . . . , ada1)

VAS is bounded iff Zariski closure has dimension at most one
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Postscript: A Challenge in Program Analysis

[. . . ] use inequality relationships to determine at com-
pile time whether the value of an expression is within a
specified range. This includes compile-time overflow, in-
teger subrange, and array bound checking.

Compute inductive invariants determined by linear and polynomial
inequalities?
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The Monniaux Problem

P. Cousot N. Halbwachs D. Monniaux

“Forty years of research on convex polyhedral invariants have
focused, on the one hand, on identifying “easier” subclasses, on
the other hand on heuristics for finding general convex polyhedra.
These heuristics are however not guaranteed to find polyhedral
inductive invariants when they exist. To our best knowledge, the
existence of polyhedral inductive invariants has never been proved
to be undecidable.”

– David Monniaux, Acta Inf. 2019


