Part Ill: Loop Invariants



Programming in the Jurassic Era

destination (or origin) is v. An interpretation I of a flowchart is a mapping
of its edges on propositions. Some, but not necessarily all, of the free
variables of these propositi may be variabl ipulated by the
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FiGURE 1. Flowchart of program to compute S = /-1 a; (n 2 0)

Robert W. Floyd, Assigning Meanings to Programs, 1967



Invariants

invariant = overapproximation of the reachable states



Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition




Invariant Synthesis

BAD!

The classical approach to the verification of temporal
safety properties of programs requires the construction of
inductive invariants [.../. Automation of this construc-
tion is the main challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007



Does This Program Halt?

X :=3;
y =2
while 2y —x > —2 do
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Does This Program Halt?

x:=3;
y =2
while 2y — x> —2 do

()= 2)()

Polynomial invariant: x — 9x% — y + 24xy — 16y> =0



Automata-Theoretic Application of Polynomial Invarian

DECIDABLE AND UNDECIDABLE PROBLEMS
ABOUT QUANTUM AUTOMATA*

VINCENT D. BLONDEL', EMMANUEL JEANDEL}, PASCAL KOIRAN}, AND
NATACHA PORTIER}

Abstract. We study the following decision problem: is the language recognized by a quantum
finite automaton empty or nonempty? We prove that this problem is decidable or undecidable
depending on whether recognition is defined by strict or nonstrict thresholds. This result is in
contrast with the corresponding situation for probabilistic finite automata, for which it is known
that strict and nonstrict thresholds both lead to undecidable problems.

Theorem (Blondel, Jeandel, Koiran, Portier 2005)

The strict threshold problem is decidable for quantum automata.




From Flowcharts to Affine Programs

Affine programs (Muller-Olm and Seidl 2004)




From Flowcharts to Affine Programs

Affine programs (Muller-Olm and Seidl 2004)

e Nondeterministic branching (no guards)



From Flowcharts to Affine Programs

Affine programs (Muller-Olm and Seidl 2004)

e Nondeterministic branching (no guards)

@ Integer variables with affine assignments



From Flowcharts to Affine Programs

Affine programs (Muller-Olm and Seidl 2004)

e Nondeterministic branching (no guards)

@ Integer variables with affine assignments



From Flowcharts to Affine Programs

Affine programs (Muller-Olm and Seidl 2004)

e Nondeterministic branching (no guards)
@ Integer variables with affine assignments

@ Compute all valid polynomial relations at each location



From Flowcharts to Affine Programs

Affine programs (Muller-Olm and Seidl 2004)

Nondeterministic branching (no guards)
Integer variables with affine assignments

Compute all valid polynomial relations at each location

Represents the Zariski closure of the reachable set at each
location
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Geometric Picture

x,y,z range over Z (or Q)

(h, h, ) is an inductive invariant
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Computing Strongest Polynomial Invariants

A(S1)CS = A(S)CS

Invariants are inductive because affine functions are continuous



Generating Inductive Invariants

@ Choose the right abstract domain

o Some domains always have ‘best’ (strongest, smallest)
invariants, others not



Generating Inductive Invariants

@ Choose the right abstract domain

o Some domains always have ‘best’ (strongest, smallest)
invariants, others not

e Compute an invariant!
e Many eclectic methods: fixed-point computations, constraint
solving, interpolation, abduction, machine learning, ...
e Some approaches require 'widening’ to ensure termination
o Other techniques invoke e.g. dimension or algebraic arguments
o Trade-off between precision and tractability ...



Affine Invariants for Affine Programs

Affine Relationships Among Variables of a Program™*
Michael Karr

Received May 8, 1974

Summary. Several optimizations of programs can be performed when in certain
regions of a program equality relationships hold between a linear combination of the
variables of the program and a constant. This paper presents a practical approach to
detecting these relationships by considering the problem from the viewpoint of linear
algebra. Key to the practicality of this approach is an algorithm for the calculation of
the ““sum” of linear subspaces.

Theorem (Karr 76)

There is an algorithm that computes, for any given affine program
over Q, its strongest affine inductive invariant.




Polynomial Invariants for Affine Programs

A Note on Karr’s Algorithm

Markus Miiller-Olm'* and Helmut Seidl®

Abstract. We give a simple formulation of Karr’s algorithm for computing all
affine relationships in affine programs. This simplified algorithm runs in time
O(nk*) where n is the program size and k is the number of program variables
assuming unit cost for arithmetic operations. This improves upon the original
formulation by a factor of k. Moreover, our re-formulation avoids exponential
growth of the lengths of intermediately occurring numbers (in binary representa-
tion) and uses less complicated elementary operations. We also describe a gener-
alization that determines all polynomial relations up to degree d in time O (nk>®).

Theorem (ICALP 2004)

There is an algorithm that computes, for any given affine program
over Q, all its polynomial invariants up to any fixed degree d.
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“It is a challenging problem whether or not the set of all
valid polynomial relations can be computed, not just the
ones of some given form”
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Strongest Polynomial Invariants @ LICS 2018

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes, for any given affine
program over Q, its strongest polynomial inductive invariant.

@ Algorithm computes for each location the set of all
polynomial relations among program variables that hold
whenever control reaches that location

@ We represent this set of relations using a finite basis of
polynomial equalities

@ Dually, the algorithm computes for each location the smallest
algebraic set containing the set of reachable states:
e algebraic sets are defined by conjunctions of polynomial
equalities

e Smallest algebraic set = Zariski closure
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each M; € Q9*d
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Zariski Closure of Linear Semigroups

dxd M;
OMl,...,MkEQ ,\/’1
e Linear semigroup (My, ..., M) C Q9x9 Q Ms
e Zariski closure (My, ..., M) C R9*d Ms UM4

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes (My, ..., My).



Zariski Closure of Linear Semigroups

OMl,...,MkEQdXd M1
e Linear semigroup (My, ..., M) C Q9x9

M) C RIxd MQO

@ Zariski closure (M, ...

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes (My, ..., My).
Outputs a finite list of polynomials p1,..., pm € Z[x1, ..., x4]
such that:

<M17---7Mk>:V(Pla-"7Pm)
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ON FINITE SEMIGROUPS OF MATRICES*

Arnaldo MANDEL' and Imre SIMON?
Instituto de M gtica e Estatistica, Universidade de Sao Paulo, 05508 Sdo Paulo, SP, Brasil

‘Communicated by M. Nivat
Received February 1977

Abstract. Finite samlgmups of n by n matriccs over the naturals are characterized both by

ic and combi hods. Next we show that the cardinality of a finite semigroup S of

n by n matrices over a field is bounded by a function depending only on n, the number of

of S and the il dinality of its sub Asa given n and k,

there exlsl, up to |somurphlsm only a finite number of finite semigro.ps of n by n matrices over

the g d by at most k el Among other applications to Automaton Theory,
we show that it is decidable whether the behavior of a given N— X automaton is bounded.

1. Introduction

The results in this paper originated from the investigation of the following
question in Automaton Theory: Is it decidable whether the behavior of a given
N- X3 automaton is bounded? This is answered affirmatively and it leads to the
study of finite semigroups cf matrices over the naturals. After obtaining effective
characterizations of these semigroups, we investigate finite semigroups of matrices
ove: a field. This enables us to generalize, to matrices over the rationals, one of the
results obtained earlier. ’
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Abstract. Finite semxgmups of n by n matriccs over the naturals are characterized both by

! ic and hods. Next we show that the cardinality of a finite semigroup S of

n by n matrices over a field is bounded by a function depending only on n, the number of

of S and the il dinality of its Asa given n and k,

there exist, up to isomorphism, only a finite number of finitc semigro.ps of n by n matrices over

the rational d by at most k Among other applications to Automaton Theory,
we show that it is decidable whethei the behavior of a given N— X automaton is bounded.

(M, ..., Mg) is finite
—

(My, ..., M) is finite!
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Some Hard Problems for Linear Semigroups

Theorem (Markov 1947)

There is a fixed set of 6 X 6 integer matrices
My, ..., My such that the membership problem
‘M e (Myq,...,My)?" is undecidable.

Mortality: Is the zero matrix contained in the semigroup
generated by a given set of n x n matrices with integer entries?

Theorem (Paterson 1970)

The mortality problem is undecidable for
3 X 3 matrices.




The Group Case
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Abstract

We show that several problems which are known to be undecidable for probabilistic automata
become decidable for quantum finite automata. Our main tool is an algebraic result of independent
interest: we give an algorithm which, given a finite number of invertible matrices, computes the
Zariski closure of the group generated by these matrices.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Quantum automata; Probabilistic automata; Undecidability; Algebraic groups: Algebraic geometry




Some Ingredients

Theorem (Schur 1911)

Every finitely generated periodic subgroup of
GL,(C) is finite.




Some Ingredients

Theorem (Schur 1911)

Every finitely generated periodic subgroup of
GL,(C) is finite.

Theorem (Masser 1988)

Given algebraic numbers A1, ..., Ak, there is a
procedure to compute the set of
multiplicative relations

{(m,...,nk) €ZF A - AP =1},




Multiplicative Relations
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Multiplicative Relations

Write A = (

cown
onm
|l oo
~

\_/

{Ar:neZ} = {A":neN}
2" p2n=1 0
= {(o 2" 0 ):neN}
0 0 (—4)
xy 0 xy 0
= {<0xo>,<0x 0>:x,ye]R,x7é0}
00 x? 00 —x?

Zariski closure is determined by multiplicative relationships
among eigenvalues.
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Categorical Structure in Linear Semigroups

Given algebraic semigroup S € M,(Q) and r € N, define
S, ={A€ S :rank(A) =r}.

Not a semigroup in general, but consider S, as a category:

(U//, V//) .
Object (U, V) st. U,V CC"
e UNV =0
A o dm(U)=n—r,dim(V)=r

Arrow (U, V) — (U, V'):
@ Ac S, s.t. ker(A) = U,
Im(A) =V’

(U, V) A (v, Vv
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Properties of C,

@ Each non-trivial SCC is a groupoid.

@ The number of non-trivial SCCs is at most (':)

Roughly Speaking . ..

We generalise the algorithm of Derksen, Jeandel, and Koiran from
finitely generated groups to groupoids with algebraic sets of
generators.




Polynomial Invariants for Affine Programs, LICS 2018

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

Given a finite set of rational square matrices of the same
dimension, we can compute the Zariski closure of the semigroup
that they generate.

Corollary

Given an affine program, we can compute for each location the
ideal of all polynomial relations that hold at that location.



From Affine Programs to Polynomial Programs

Equivalence of Deterministic Top-Down Tree-to-String
Transducers Is Decidable

HELMUT SEIDL, Technical University of Munich
SEBASTIAN MANETH, Universitit of Bremen
GREGOR KEMPER, Technical University of Munich

“[...] we introduce polynomial transducers and prove
that for these, equivalence can be certified by means of an
inductive polynomial invariant. This allows us to construct
two semi-algorithms, one searching for an invariant and the
other for a witness of non-equivalence |[...]"
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Undecidability for Polynomial Programs

Theorem (Dufourd, Finkel, Schnoebelen 1998)

The boundedness problem for reset vector addition systems is
undecidable.

Theorem (Hrushovski, Ouaknine, Pouly, W. 23)

There is no algorithm that computes the Zariski closure of the
reachable set of a polynomial program.

@ Simulate reset VAS by polynomial program:

@ Represent VAS configuration (ai,...,aq) “projectively” by
configuration (z,a1z,...,a42z), z # 0: of polynmial program

dec(1): (z,a1,...,aq) = (za1,(a1 — z)a1, @31, ...,a431)

@ VAS is bounded iff Zariski closure has dimension at most one



Postscript: A Challenge in Program Analysis

AUTOMATIC DISCOVERY OF LINEAR RESTRAINTS AMONG VARIABLES OF A PROGRAM

Patrick Cousot® and Nicolas Halbwachs™™

Laboratoire d'Informaetique, U.S.M.G., BP. 53
38041 Grenoble cédex, France

[...] use inequality relationships to determine at com-
pile time whether the value of an expression is within a
specified range. This includes compile-time overflow, in-
teger subrange, and array bound checking.



Postscript: A Challenge in Program Analysis

AUTOMATIC DISCOVERY OF LINEAR RESTRAINTS AMONG VARIABLES OF A PROGRAM

Patrick Cousot® and Nicolas Halbwachs™™

Laboratoire d'Informaetique, U.S.M.G., BP. 53
38041 Grenoble cédex, France

[...] use inequality relationships to determine at com-
pile time whether the value of an expression is within a
specified range. This includes compile-time overflow, in-
teger subrange, and array bound checking.

Compute inductive invariants determined by linear and polynomial
inequalities?



The Monniaux Problem

P. Cousot N. Halbwachs D. Monniaux

“Forty years of research on convex polyhedral invariants have
focused, on the one hand, on identifying “easier” subclasses, on
the other hand on heuristics for finding general convex polyhedra.
These heuristics are however not guaranteed to find polyhedral
inductive invariants when they exist. To our best knowledge, the
existence of polyhedral inductive invariants has never been proved
to be undecidable.”

— David Monniaux, Acta Inf. 2019



