
Part III: Loop Invariants

Programming in the Jurassic Era

Robert W. Floyd, Assigning Meanings to Programs, 1967

Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

Invariant Synthesis

I
S

BAD!

The classical approach to the verification of temporal
safety properties of programs requires the construction of
inductive invariants [...]. Automation of this construc-
tion is the main challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007

Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Polynomial invariant: x − 9x2 − y + 24xy − 16y2 = 0

Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Polynomial invariant: x − 9x2 − y + 24xy − 16y2 = 0

Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Polynomial invariant: x − 9x2 − y + 24xy − 16y2 = 0

Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Polynomial invariant: x − 9x2 − y + 24xy − 16y2 = 0

Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Polynomial invariant: x − 9x2 − y + 24xy − 16y2 = 0

Does This Program Halt?

x := 3;
y := 2;
while 2y − x ≥ −2 do(

x
y

)
:=

(
10 −8
6 −4

)(
x
y

)
;

Polynomial invariant: x − 9x2 − y + 24xy − 16y2 = 0

Automata-Theoretic Application of Polynomial Invariants

SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 34, No. 6, pp. 1464–1473

DECIDABLE AND UNDECIDABLE PROBLEMS
ABOUT QUANTUM AUTOMATA∗

VINCENT D. BLONDEL† , EMMANUEL JEANDEL‡ , PASCAL KOIRAN‡ , AND

NATACHA PORTIER‡

Abstract. We study the following decision problem: is the language recognized by a quantum
finite automaton empty or nonempty? We prove that this problem is decidable or undecidable
depending on whether recognition is defined by strict or nonstrict thresholds. This result is in
contrast with the corresponding situation for probabilistic finite automata, for which it is known
that strict and nonstrict thresholds both lead to undecidable problems.

Key words. quantum automata, probabilistic automata, undecidable problems, algebraic
groups

AMS subject classifications. 81P68, 68Q45

DOI. 10.1137/S0097539703425861

1. Introduction. In this paper, we provide decidability and undecidability
proofs for two problems associated with quantum finite automata. Quantum finite
automata (QFA) were introduced by Moore and Crutchfield [MC00]; they are to quan-
tum computers what finite automata are to Turing machines. Quantum automata are
also analogous to the probabilistic finite automata introduced in the 1960s by Rabin
that accept words with a certain probability (see [Rab63], [Rab67]; see also [Paz71] for
a book-length treatment). A quantum automaton A assigns real values ValA(w) to
input words w (see below for a precise description of how these values are computed).
ValA(w) can be interpreted as the probability that on any given run of A on the input
word w, w is accepted by A. Nonisolated cut-point recognition will be considered in
this article: we do not ask for a gap between the set of ValA(w) for accepted words
w and the set of ValA(w) for rejected words w. Associated to a real threshold λ, the
languages recognized by the automaton A with nonstrict and strict threshold λ are

L≥ = {w : ValA(w) ≥ λ} and L> = {w : ValA(w) > λ}.

Many properties of these languages are known in the case of probabilistic and quantum
automata. For instance, it is known that the class of languages recognized by quantum
automata is strictly contained in the class of languages recognized by probabilistic
finite automata [BP02]. For probabilistic automata it is also known that the problem
of determining if L≥ is empty and the problem of determining if L> is empty are
undecidable (see [Paz71, Thm. 6.17, p. 90]). This is true even for automata of fixed
dimensions [BC03]. Decidability problems on QFA were first studied in the paper
by Amano and Iwama [AI99]: is the language recognized by a 1.5-way quantum
automaton empty? The undecidability of this problem was proven, even in the case
of isolated cut-point.

∗Received by the editors April 9, 2003; accepted for publication (in revised form) December 11,
2004; published electronically August 17, 2005.

http://www.siam.org/journals/sicomp/34-6/42586.html
†Department of Mathematical Engineering, Université Catholique de Louvain (blondel@inma.ucl.

ac.be).
‡Laboratoire de l’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon (Emmanuel.

Jeandel@ens-lyon.fr, Pascal.Koiran@ens-lyon.fr, Natacha.Portier@ens-lyon.fr).

1464

Theorem (Blondel, Jeandel, Koiran, Portier 2005)

The strict threshold problem is decidable for quantum automata.

From Flowcharts to Affine Programs

Affine programs (Muller-Olm and Seidl 2004)

1 2

3

f1
f2

f3

f4f5

Nondeterministic branching (no guards)

Integer variables with affine assignments

Compute all valid polynomial relations at each location

Represents the Zariski closure of the reachable set at each
location

From Flowcharts to Affine Programs

Affine programs (Muller-Olm and Seidl 2004)

1 2

3

f1
f2

f3

f4f5

Nondeterministic branching (no guards)

Integer variables with affine assignments

Compute all valid polynomial relations at each location

Represents the Zariski closure of the reachable set at each
location

From Flowcharts to Affine Programs

Affine programs (Muller-Olm and Seidl 2004)

1 2

3

f1
f2

f3

f4f5

Nondeterministic branching (no guards)

Integer variables with affine assignments

Compute all valid polynomial relations at each location

Represents the Zariski closure of the reachable set at each
location

From Flowcharts to Affine Programs

Affine programs (Muller-Olm and Seidl 2004)

1 2

3

x := 3x − 7y
f2

f3

f4f5

Nondeterministic branching (no guards)

Integer variables with affine assignments

Compute all valid polynomial relations at each location

Represents the Zariski closure of the reachable set at each
location

From Flowcharts to Affine Programs

Affine programs (Muller-Olm and Seidl 2004)

1 2

3

x := 3x − 7y
f2

f3

f4f5

Nondeterministic branching (no guards)

Integer variables with affine assignments

Compute all valid polynomial relations at each location

Represents the Zariski closure of the reachable set at each
location

From Flowcharts to Affine Programs

Affine programs (Muller-Olm and Seidl 2004)

1 2

3

x := 3x − 7y
f2

f3

f4f5

Nondeterministic branching (no guards)

Integer variables with affine assignments

Compute all valid polynomial relations at each location

Represents the Zariski closure of the reachable set at each
location

Geometric Picture

x , y , z range over Q

21

3

f1

f4

f3

f2

f5

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

21

3

f1

f4

f3

f2

f5

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

3

f1

f4

f3

f2

f5

21

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

3

f1

f4

f3

f2

f5

21

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

3
f4

f3

f2

f5

2
f1

1

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

3
f4

f3

f2

f5

2
f1

1

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

3
f4

f3

f5

2
f1 f21

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

3
f4

f3

f5

2
f1 f21

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

3
f4

f3

f5

2
f1 f21

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

3
f5

2
f1 f2

f4

f3

1

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

3

2
f1 f2

f4

3

f5

f
1

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

3

2
f1 f2

f4

3

f5

f
1

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

3

2
f1 f2

f4

3

f5

f
1

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

3

2
f1 f2

f4

f3

f5

1

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

2
f1 f2

f4

f3

f5

1

3

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

2
f1 f2

f4

f3

f5

1

3

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

2
f1 f2

f4

f3

f5

1

3

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

2
f1 f2

f4

f3

f5

1

3

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

1 S 2S

S3

2
1 f2

f4

f3

f5

f

3

1

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

I S11

S3

I 2

I 3

S 2

2
1 f2

f4

f3

f5

f

3

1

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

I

I 3

I
1

2

2
1 f2

f4

f3

5

f

3
f

1

⟨I1, I2, I3⟩ is an invariant

Geometric Picture

x , y , z range over Z (or Q)

2
I1

I

I 3

f

1

3

5

f

3

2
1 f2

f4

f

⟨I1, I2, I3⟩ is an inductive invariant

Computing Strongest Polynomial Invariants

1 S 2S

S3

2
1 f2

f4

f3

f5

f

3

1

f1(S1) ⊆ S2 =⇒ f1(S1) ⊆ S2

Invariants are inductive because affine functions are continuous

Computing Strongest Polynomial Invariants

2

S3

S1 2

3

SSS1

S

2
1 f2

f4

f3

f5

f

3

1

f1(S1) ⊆ S2 =⇒ f1(S1) ⊆ S2

Invariants are inductive because affine functions are continuous

Computing Strongest Polynomial Invariants

2

S3

S1 2

3

SSS1

S

2
1 f2

f4

f3

f5

f

3

1

f1(S1) ⊆ S2

=⇒ f1(S1) ⊆ S2

Invariants are inductive because affine functions are continuous

Computing Strongest Polynomial Invariants

2

S3

S1 2

3

SSS1

S

2
1 f2

f4

f3

f5

f

3

1

f1(S1) ⊆ S2 =⇒ f1(S1) ⊆ S2

Invariants are inductive because affine functions are continuous

Computing Strongest Polynomial Invariants

2

S3

S1 2

3

SSS1

S

2
1 f2

f4

f3

f5

f

3

1

f1(S1) ⊆ S2 =⇒ f1(S1) ⊆ S2

Invariants are inductive because affine functions are continuous

Generating Inductive Invariants

Choose the right abstract domain

Some domains always have ‘best’ (strongest, smallest)
invariants, others not

Compute an invariant!

Many eclectic methods: fixed-point computations, constraint
solving, interpolation, abduction, machine learning, . . .
Some approaches require ’widening’ to ensure termination
Other techniques invoke e.g. dimension or algebraic arguments
Trade-off between precision and tractability . . .

Generating Inductive Invariants

Choose the right abstract domain

Some domains always have ‘best’ (strongest, smallest)
invariants, others not

Compute an invariant!

Many eclectic methods: fixed-point computations, constraint
solving, interpolation, abduction, machine learning, . . .
Some approaches require ’widening’ to ensure termination
Other techniques invoke e.g. dimension or algebraic arguments
Trade-off between precision and tractability . . .

Affine Invariants for Affine Programs

Theorem (Karr 76)

There is an algorithm that computes, for any given affine program
over Q, its strongest affine inductive invariant.

Polynomial Invariants for Affine Programs

Theorem (ICALP 2004)

There is an algorithm that computes, for any given affine program
over Q, all its polynomial invariants up to any fixed degree d .

Finding all polynomial invariants

“It is a challenging problem whether or not the set of all
valid polynomial relations can be computed, not just the
ones of some given form”

Finding all polynomial invariants

“It is a challenging problem whether or not the set of all
valid polynomial relations can be computed, not just the
ones of some given form”

Strongest Polynomial Invariants @ LICS 2018

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes, for any given affine
program over Q, its strongest polynomial inductive invariant.

Algorithm computes for each location the set of all
polynomial relations among program variables that hold
whenever control reaches that location

We represent this set of relations using a finite basis of
polynomial equalities

Dually, the algorithm computes for each location the smallest
algebraic set containing the set of reachable states:

algebraic sets are defined by conjunctions of polynomial
equalities

Smallest algebraic set = Zariski closure

Strongest Polynomial Invariants @ LICS 2018

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes, for any given affine
program over Q, its strongest polynomial inductive invariant.

Algorithm computes for each location the set of all
polynomial relations among program variables that hold
whenever control reaches that location

We represent this set of relations using a finite basis of
polynomial equalities

Dually, the algorithm computes for each location the smallest
algebraic set containing the set of reachable states:

algebraic sets are defined by conjunctions of polynomial
equalities

Smallest algebraic set = Zariski closure

Strongest Polynomial Invariants @ LICS 2018

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes, for any given affine
program over Q, its strongest polynomial inductive invariant.

Algorithm computes for each location the set of all
polynomial relations among program variables that hold
whenever control reaches that location

We represent this set of relations using a finite basis of
polynomial equalities

Dually, the algorithm computes for each location the smallest
algebraic set containing the set of reachable states:

algebraic sets are defined by conjunctions of polynomial
equalities

Smallest algebraic set = Zariski closure

Strongest Polynomial Invariants @ LICS 2018

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes, for any given affine
program over Q, its strongest polynomial inductive invariant.

Algorithm computes for each location the set of all
polynomial relations among program variables that hold
whenever control reaches that location

We represent this set of relations using a finite basis of
polynomial equalities

Dually, the algorithm computes for each location the smallest
algebraic set containing the set of reachable states:

algebraic sets are defined by conjunctions of polynomial
equalities

Smallest algebraic set = Zariski closure

Strongest Polynomial Invariants @ LICS 2018

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes, for any given affine
program over Q, its strongest polynomial inductive invariant.

Algorithm computes for each location the set of all
polynomial relations among program variables that hold
whenever control reaches that location

We represent this set of relations using a finite basis of
polynomial equalities

Dually, the algorithm computes for each location the smallest
algebraic set containing the set of reachable states:

algebraic sets are defined by conjunctions of polynomial
equalities

Smallest algebraic set = Zariski closure

Strongest Polynomial Invariants @ LICS 2018

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes, for any given affine
program over Q, its strongest polynomial inductive invariant.

Algorithm computes for each location the set of all
polynomial relations among program variables that hold
whenever control reaches that location

We represent this set of relations using a finite basis of
polynomial equalities

Dually, the algorithm computes for each location the smallest
algebraic set containing the set of reachable states:

algebraic sets are defined by conjunctions of polynomial
equalities

Smallest algebraic set = Zariski closure

From Affine Programs to Linear Semigroups

M

1

3

f1

f4

f3

f2

f5

2

2M

3M

4

each Mi ∈ Qd×d

From Affine Programs to Linear Semigroups

21

3

f1

f4

f3

f2

f5

1M

4M
5M

2M

3M

each Mi ∈ Qd×d

From Affine Programs to Linear Semigroups

21

3

f1

f4

f3

f2

f5

1M

4M
5M

2M

3M

each Mi ∈ Qd×d

Zariski Closure of Linear Semigroups

M1, . . . ,Mk ∈ Qd×d

Linear semigroup ⟨M1, . . . ,Mk⟩ ⊆ Qd×d

Zariski closure ⟨M1, . . . ,Mk⟩ ⊆ Rd×d

M

4M
5M

2M

3M

1

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes ⟨M1, . . . ,Mk⟩.

Outputs a finite list of polynomials p1, . . . , pm ∈ Z[x1, . . . , xd2]
such that:

⟨M1, . . . ,Mk⟩ = V(p1, . . . , pm)

Zariski Closure of Linear Semigroups

M1, . . . ,Mk ∈ Qd×d

Linear semigroup ⟨M1, . . . ,Mk⟩ ⊆ Qd×d

Zariski closure ⟨M1, . . . ,Mk⟩ ⊆ Rd×d

M

4M
5M

2M

3M

1

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes ⟨M1, . . . ,Mk⟩.

Outputs a finite list of polynomials p1, . . . , pm ∈ Z[x1, . . . , xd2]
such that:

⟨M1, . . . ,Mk⟩ = V(p1, . . . , pm)

Zariski Closure of Linear Semigroups

M1, . . . ,Mk ∈ Qd×d

Linear semigroup ⟨M1, . . . ,Mk⟩ ⊆ Qd×d

Zariski closure ⟨M1, . . . ,Mk⟩ ⊆ Rd×d

M

4M
5M

2M

3M

1

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes ⟨M1, . . . ,Mk⟩.

Outputs a finite list of polynomials p1, . . . , pm ∈ Z[x1, . . . , xd2]
such that:

⟨M1, . . . ,Mk⟩ = V(p1, . . . , pm)

Zariski Closure of Linear Semigroups

M1, . . . ,Mk ∈ Qd×d

Linear semigroup ⟨M1, . . . ,Mk⟩ ⊆ Qd×d

Zariski closure ⟨M1, . . . ,Mk⟩ ⊆ Rd×d

M

4M
5M

2M

3M

1

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes ⟨M1, . . . ,Mk⟩.

Outputs a finite list of polynomials p1, . . . , pm ∈ Z[x1, . . . , xd2]
such that:

⟨M1, . . . ,Mk⟩ = V(p1, . . . , pm)

Zariski Closure of Linear Semigroups

M1, . . . ,Mk ∈ Qd×d

Linear semigroup ⟨M1, . . . ,Mk⟩ ⊆ Qd×d

Zariski closure ⟨M1, . . . ,Mk⟩ ⊆ Rd×d

M

4M
5M

2M

3M

1

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm which computes ⟨M1, . . . ,Mk⟩.

Outputs a finite list of polynomials p1, . . . , pm ∈ Z[x1, . . . , xd2]
such that:

⟨M1, . . . ,Mk⟩ = V(p1, . . . , pm)

⟨M1, . . . ,Mk⟩ is finite

⇐⇒

⟨M1, . . . ,Mk⟩ is finite!

Some Hard Problems for Linear Semigroups

Theorem (Markov 1947)

There is a fixed set of 6× 6 integer matrices
M1, . . . ,Mk such that the membership problem
“M ∈ ⟨M1, . . . ,Mk⟩?” is undecidable.

Mortality: Is the zero matrix contained in the semigroup
generated by a given set of n × n matrices with integer entries?

Theorem (Paterson 1970)

The mortality problem is undecidable for
3× 3 matrices.

Some Hard Problems for Linear Semigroups

Theorem (Markov 1947)

There is a fixed set of 6× 6 integer matrices
M1, . . . ,Mk such that the membership problem
“M ∈ ⟨M1, . . . ,Mk⟩?” is undecidable.

Mortality: Is the zero matrix contained in the semigroup
generated by a given set of n × n matrices with integer entries?

Theorem (Paterson 1970)

The mortality problem is undecidable for
3× 3 matrices.

Some Hard Problems for Linear Semigroups

Theorem (Markov 1947)

There is a fixed set of 6× 6 integer matrices
M1, . . . ,Mk such that the membership problem
“M ∈ ⟨M1, . . . ,Mk⟩?” is undecidable.

Mortality: Is the zero matrix contained in the semigroup
generated by a given set of n × n matrices with integer entries?

Theorem (Paterson 1970)

The mortality problem is undecidable for
3× 3 matrices.

The Group Case

Some Ingredients

Theorem (Schur 1911)

Every finitely generated periodic subgroup of
GLn(C) is finite.

Theorem (Masser 1988)

Given algebraic numbers λ1, . . . , λk , there is a
procedure to compute the set of
multiplicative relations{

(n1, . . . , nk) ∈ Zk : λn1
1 · · ·λnk

k = 1
}
.

Some Ingredients

Theorem (Schur 1911)

Every finitely generated periodic subgroup of
GLn(C) is finite.

Theorem (Masser 1988)

Given algebraic numbers λ1, . . . , λk , there is a
procedure to compute the set of
multiplicative relations{

(n1, . . . , nk) ∈ Zk : λn1
1 · · ·λnk

k = 1
}
.

Multiplicative Relations

Write A =

(
2 1 0
0 2 0
0 0 −4

)
:

{An : n ∈ Z} = {An : n ∈ N}

=

{(
2n n2n−1 0
0 2n 0
0 0 (−4)n

)
: n ∈ N

}

=

{(
x y 0

0 x 0

0 0 x2

)
,

(
x y 0

0 x 0

0 0 −x2

)
: x , y ∈ R, x ̸= 0

}

Zariski closure is determined by multiplicative relationships
among eigenvalues.

Multiplicative Relations

Write A =

(
2 1 0
0 2 0
0 0 −4

)
:

{An : n ∈ Z} = {An : n ∈ N}

=

{(
2n n2n−1 0
0 2n 0
0 0 (−4)n

)
: n ∈ N

}

=

{(
x y 0

0 x 0

0 0 x2

)
,

(
x y 0

0 x 0

0 0 −x2

)
: x , y ∈ R, x ̸= 0

}

Zariski closure is determined by multiplicative relationships
among eigenvalues.

Multiplicative Relations

Write A =

(
2 1 0
0 2 0
0 0 −4

)
:

{An : n ∈ Z} = {An : n ∈ N}

=

{(
2n n2n−1 0
0 2n 0
0 0 (−4)n

)
: n ∈ N

}

=

{(
x y 0

0 x 0

0 0 x2

)
,

(
x y 0

0 x 0

0 0 −x2

)
: x , y ∈ R, x ̸= 0

}

Zariski closure is determined by multiplicative relationships
among eigenvalues.

Multiplicative Relations

Write A =

(
2 1 0
0 2 0
0 0 −4

)
:

{An : n ∈ Z} = {An : n ∈ N}

=

{(
2n n2n−1 0
0 2n 0
0 0 (−4)n

)
: n ∈ N

}

=

{(
x y 0

0 x 0

0 0 x2

)
,

(
x y 0

0 x 0

0 0 −x2

)
: x , y ∈ R, x ̸= 0

}

Zariski closure is determined by multiplicative relationships
among eigenvalues.

Multiplicative Relations

Write A =

(
2 1 0
0 2 0
0 0 −4

)
:

{An : n ∈ Z} = {An : n ∈ N}

=

{(
2n n2n−1 0
0 2n 0
0 0 (−4)n

)
: n ∈ N

}

=

{(
x y 0

0 x 0

0 0 x2

)
,

(
x y 0

0 x 0

0 0 −x2

)
: x , y ∈ R, x ̸= 0

}

Zariski closure is determined by multiplicative relationships
among eigenvalues.

Categorical Structure in Linear Semigroups

Given algebraic semigroup S ⊆ Mn(Q) and r ∈ N, define

S r := {A ∈ S : rank(A) = r} .

Not a semigroup in general, but consider S r as a category:

(U,V) (U ′,V ′)

(U ′′,V ′′)

A

A′

Object (U,V) s.t. U,V ⊆ Cn

U ∩ V = 0

dim(U) = n − r , dim(V) = r

Arrow (U,V) → (U ′,V ′):

A ∈ S r s.t. ker(A) = U,

Im(A) = V ′

Categorical Structure in Linear Semigroups

Given algebraic semigroup S ⊆ Mn(Q) and r ∈ N, define

S r := {A ∈ S : rank(A) = r} .

Not a semigroup in general, but consider S r as a category:

(U,V) (U ′,V ′)

(U ′′,V ′′)

A

A′

Object (U,V) s.t. U,V ⊆ Cn

U ∩ V = 0

dim(U) = n − r , dim(V) = r

Arrow (U,V) → (U ′,V ′):

A ∈ S r s.t. ker(A) = U,

Im(A) = V ′

Categorical Structure in Linear Semigroups

Given algebraic semigroup S ⊆ Mn(Q) and r ∈ N, define

S r := {A ∈ S : rank(A) = r} .

Not a semigroup in general, but consider S r as a category:

(U,V) (U ′,V ′)

(U ′′,V ′′)

A

A′

Object (U,V) s.t. U,V ⊆ Cn

U ∩ V = 0

dim(U) = n − r , dim(V) = r

Arrow (U,V) → (U ′,V ′):

A ∈ S r s.t. ker(A) = U,

Im(A) = V ′

Categorical Structure in Linear Semigroups

Given algebraic semigroup S ⊆ Mn(Q) and r ∈ N, define

S r := {A ∈ S : rank(A) = r} .

Not a semigroup in general, but consider S r as a category:

(U,V) (U ′,V ′)

(U ′′,V ′′)

A

A′

Object (U,V) s.t. U,V ⊆ Cn

U ∩ V = 0

dim(U) = n − r , dim(V) = r

Arrow (U,V) → (U ′,V ′):

A ∈ S r s.t. ker(A) = U,

Im(A) = V ′

Categorical Structure in Linear Semigroups

Given algebraic semigroup S ⊆ Mn(Q) and r ∈ N, define

S r := {A ∈ S : rank(A) = r} .

Not a semigroup in general, but consider S r as a category:

(U,V) (U ′,V ′)

(U ′′,V ′′)

A

A′

Object (U,V) s.t. U,V ⊆ Cn

U ∩ V = 0

dim(U) = n − r , dim(V) = r

Arrow (U,V) → (U ′,V ′):

A ∈ S r s.t. ker(A) = U,

Im(A) = V ′

Properties of Cr

Each non-trivial SCC is a groupoid.

The number of non-trivial SCCs is at most
(n
r

)
.

Roughly Speaking . . .

We generalise the algorithm of Derksen, Jeandel, and Koiran from
finitely generated groups to groupoids with algebraic sets of
generators.

Properties of Cr

Each non-trivial SCC is a groupoid.

The number of non-trivial SCCs is at most
(n
r

)
.

Roughly Speaking . . .

We generalise the algorithm of Derksen, Jeandel, and Koiran from
finitely generated groups to groupoids with algebraic sets of
generators.

Properties of Cr

Each non-trivial SCC is a groupoid.

The number of non-trivial SCCs is at most
(n
r

)
.

Roughly Speaking . . .

We generalise the algorithm of Derksen, Jeandel, and Koiran from
finitely generated groups to groupoids with algebraic sets of
generators.

Polynomial Invariants for Affine Programs, LICS 2018

Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

Given a finite set of rational square matrices of the same
dimension, we can compute the Zariski closure of the semigroup
that they generate.

Corollary

Given an affine program, we can compute for each location the
ideal of all polynomial relations that hold at that location.

From Affine Programs to Polynomial Programs

21

Equivalence of Deterministic Top-Down Tree-to-String
Transducers Is Decidable

HELMUT SEIDL, Technical University of Munich
SEBASTIAN MANETH, Universität of Bremen
GREGOR KEMPER, Technical University of Munich

We prove that equivalence of deterministic top-down tree-to-string transducers is decidable, thus solving a
long-standing open problem in formal language theory. We also present efficient algorithms for subclasses:
for linear transducers or total transducers with unary output alphabet (over a given top-down regular domain
language), as well as for transducers with the single-use restriction. These results are obtained using tech-
niques from multi-linear algebra. For our main result, we introduce polynomial transducers and prove that
for these, validity of a polynomial invariant can be certified by means of an inductive invariant of polynomial
ideals. This allows us to construct two semi-algorithms, one searching for a certificate of the invariant and
one searching for a witness of its violation. Via a translation into polynomial transducers, we thus obtain
that equivalence of general ydt transducers is decidable. In fact, our translation also shows that equivalence
is decidable when the output is not in a free monoid but in a free group.

CCS Concepts: • Theory of computation → Tree languages; Transducers;

Additional Key Words and Phrases: Tree-to-string transducer, macro tree transducer, equivalence problem,
decidability, polynomial ideals

ACM Reference format:
Helmut Seidl, Sebastian Maneth, and Gregor Kemper. 2018. Equivalence of Deterministic Top-Down Tree-to-
string Transducers Is Decidable. J. ACM 65, 4, Article 21 (April 2018), 30 pages.
https://doi.org/10.1145/3182653

1 INTRODUCTION
Transformations of structured data are at the heart of functional programming (Wadler 1990;
Marlow and Wadler 1993; Voigtländer and Kühnemann 2004; Voigtländer 2005; Matsuda et al.
2012) and also application areas such as compiling (Fülöp and Vogler 1998), document process-
ing (W3C 1999; Boag et al. 2010; Maneth and Neven 1999; Engelfriet and Maneth 2003a; Maneth
et al. 2005, 2007; Hakuta et al. 2014), automatic translation of natural languages (Liu et al. 2006,
2007; Maletti et al. 2009; Braune et al. 2013), or even cryptographic protocols (Küsters and Wilke
2007). The most fundamental model of such transformations is given by (finite-state tree) transduc-
ers (Maneth 2003; Fülöp and Vogler 1998). Transducers traverse the input by means of finitely many

Authors’ addresses: H. Seidl and G. Kemper, Fakultät für Informatik, U München, Boltzmannstr. 3, 84857 Garching,
Germany; emails: seidl@in.tum.de, kemper@ma.tum.de; S. Maneth, Department of Mathematics and Informatics,
niversität Bremen, P.O. Box 3300440, 28334 Bremen, Germany; email: maneth@uni-bremen.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 0004-5411/2018/04-ART21 $15.00
https://doi.org/10.1145/3182653

Journal of the ACM, Vol. 65, No. 4, Article 21. Publication date: April 2018.

“ [. . .] we introduce polynomial transducers and prove
that for these, equivalence can be certified by means of an
inductive polynomial invariant. This allows us to construct
two semi-algorithms, one searching for an invariant and the
other for a witness of non-equivalence [. . .]”

Undecidability for Polynomial Programs

Theorem (Dufourd, Finkel, Schnoebelen 1998)

The boundedness problem for reset vector addition systems is
undecidable.

Theorem (Hrushovski, Ouaknine, Pouly, W. 23)

There is no algorithm that computes the Zariski closure of the
reachable set of a polynomial program.

Simulate reset VAS by polynomial program:

Represent VAS configuration (a1, . . . , ad) “projectively” by
configuration (z , a1z , . . . , adz), z ̸= 0: of polynmial program

dec(1) : (z , a1, . . . , ad) := (za1, (a1 − z)a1, a2a1, . . . , ada1)

VAS is bounded iff Zariski closure has dimension at most one

Undecidability for Polynomial Programs

Theorem (Dufourd, Finkel, Schnoebelen 1998)

The boundedness problem for reset vector addition systems is
undecidable.

Theorem (Hrushovski, Ouaknine, Pouly, W. 23)

There is no algorithm that computes the Zariski closure of the
reachable set of a polynomial program.

Simulate reset VAS by polynomial program:

Represent VAS configuration (a1, . . . , ad) “projectively” by
configuration (z , a1z , . . . , adz), z ̸= 0: of polynmial program

dec(1) : (z , a1, . . . , ad) := (za1, (a1 − z)a1, a2a1, . . . , ada1)

VAS is bounded iff Zariski closure has dimension at most one

Undecidability for Polynomial Programs

Theorem (Dufourd, Finkel, Schnoebelen 1998)

The boundedness problem for reset vector addition systems is
undecidable.

Theorem (Hrushovski, Ouaknine, Pouly, W. 23)

There is no algorithm that computes the Zariski closure of the
reachable set of a polynomial program.

Simulate reset VAS by polynomial program:

Represent VAS configuration (a1, . . . , ad) “projectively” by
configuration (z , a1z , . . . , adz), z ̸= 0: of polynmial program

dec(1) : (z , a1, . . . , ad) := (za1, (a1 − z)a1, a2a1, . . . , ada1)

VAS is bounded iff Zariski closure has dimension at most one

Undecidability for Polynomial Programs

Theorem (Dufourd, Finkel, Schnoebelen 1998)

The boundedness problem for reset vector addition systems is
undecidable.

Theorem (Hrushovski, Ouaknine, Pouly, W. 23)

There is no algorithm that computes the Zariski closure of the
reachable set of a polynomial program.

Simulate reset VAS by polynomial program:

Represent VAS configuration (a1, . . . , ad) “projectively” by
configuration (z , a1z , . . . , adz), z ̸= 0: of polynmial program

dec(1) : (z , a1, . . . , ad) := (za1, (a1 − z)a1, a2a1, . . . , ada1)

VAS is bounded iff Zariski closure has dimension at most one

Undecidability for Polynomial Programs

Theorem (Dufourd, Finkel, Schnoebelen 1998)

The boundedness problem for reset vector addition systems is
undecidable.

Theorem (Hrushovski, Ouaknine, Pouly, W. 23)

There is no algorithm that computes the Zariski closure of the
reachable set of a polynomial program.

Simulate reset VAS by polynomial program:

Represent VAS configuration (a1, . . . , ad) “projectively” by
configuration (z , a1z , . . . , adz), z ̸= 0: of polynmial program

dec(1) : (z , a1, . . . , ad) := (za1, (a1 − z)a1, a2a1, . . . , ada1)

VAS is bounded iff Zariski closure has dimension at most one

Undecidability for Polynomial Programs

Theorem (Dufourd, Finkel, Schnoebelen 1998)

The boundedness problem for reset vector addition systems is
undecidable.

Theorem (Hrushovski, Ouaknine, Pouly, W. 23)

There is no algorithm that computes the Zariski closure of the
reachable set of a polynomial program.

Simulate reset VAS by polynomial program:

Represent VAS configuration (a1, . . . , ad) “projectively” by
configuration (z , a1z , . . . , adz), z ̸= 0: of polynmial program

dec(1) : (z , a1, . . . , ad) := (za1, (a1 − z)a1, a2a1, . . . , ada1)

VAS is bounded iff Zariski closure has dimension at most one

Postscript: A Challenge in Program Analysis

[. . .] use inequality relationships to determine at com-
pile time whether the value of an expression is within a
specified range. This includes compile-time overflow, in-
teger subrange, and array bound checking.

Compute inductive invariants determined by linear and polynomial
inequalities?

Postscript: A Challenge in Program Analysis

[. . .] use inequality relationships to determine at com-
pile time whether the value of an expression is within a
specified range. This includes compile-time overflow, in-
teger subrange, and array bound checking.

Compute inductive invariants determined by linear and polynomial
inequalities?

The Monniaux Problem

P. Cousot N. Halbwachs D. Monniaux

“Forty years of research on convex polyhedral invariants have
focused, on the one hand, on identifying “easier” subclasses, on
the other hand on heuristics for finding general convex polyhedra.
These heuristics are however not guaranteed to find polyhedral
inductive invariants when they exist. To our best knowledge, the
existence of polyhedral inductive invariants has never been proved
to be undecidable.”

– David Monniaux, Acta Inf. 2019

